
(Paper presented at KWRA2019, Yeosu, Korea, May 30, 2019) 

Bhumipol Dam Operation Improvement via smart system  

for the Thor Tong Daeng Irrigation Project, Ping River Basin, Thailand 

Sucharit Koontanakulvong 
1, a*

, Tran Thanh Long 
2, b

, Tuan Pham Van
 3, c               

1, 2, 3 
Dept. of Water Resources Engineering, Chulalongkorn University, Bangkok, Thailand  

a
Sucharit.k@chula.ac.th, 

b
ttlongdcbk@yahoo.com, 

cphamtuanld8@gmail.com 

Abstracts 

The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the 

Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and 

groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for 

agriculture, and caused water deficit in many irrigation projects.  Farmers need to find extra sources of 

water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam 

and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue 

in the irrigation project. 

The study aims to determine the smart dam operation system to mitigate water shortage in this 

irrigation project via introduction of machine learning to improve dam operation and irrigation demand 

estimation via soil moisture estimation from satellite images.  Via ANN technique application, the 

inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall 

data. The input vectors for ANN model are identified base on regression and principal component 

analysis. The structure of ANN (length of training data, the type of activation functions, the number of 

hidden nodes and training methods) is determined from the statistics performance between measurements 

and ANN outputs.  On the other hands, the irrigation demand will be estimated by using satellite images, 

LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) 

values are estimated from the plant growth stage and soil moisture.  The values are calibrated and verified 

with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in 

the irrigation project is then estimated from the plant growth stage and soil moisture in the area.  With the 

estimated dam inflow and irrigation demand, the dam operation will manage the water release in the 

better manner compared with the past operational data. 

The results show how smart system concept was applied and improve dam operation by using 

inflow estimation from ANN technique combining with irrigation demand estimation from satellite 

images when compared with the past operation data which is an initial step to develop the smart dam 

operation system in Thailand. 
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1. Introduction 

The long-standing strategy of a dam is to impound water for securing a reliable source of water 

for a wide variety of human and environmental needs, especial in developing countries. Traditionally, the 

dam operates under the operator's subjective judgments thoroughly on stationarity and past hydrological 

experience by heuristics procedures and rule curves (Celeste and Billib 2009; Rittima 2009; Ehsani et al. 

2017). Furthermore, the frequency of extreme floods and droughts have been increasing more than before 

(Huntington 2006). Thus, the decision making of release becomes more challenge under the effects of 

both climate variability and human responses during extreme water years. Although the optimal 

reservoir’s rule curves has extensively approach over the last few decades such as dynamic programing 

(DP) (Chaleeraktrakoon and Kangrang 2007), genetic algorithms (GAs) (Tospornsampan et al. 2005), 

simulated annealing (SA) algorithms (Lamom, Thepchatri, and Rivepiboon 2008), the reservoir operating 

system has not been provided a comprehensive solution for multi‐objective in real-world problems. 

Besides, the prediction of real-time dam inflows still remains obstacle in effective transmission of 

precipitation information, consuming computation time and memory capacity  (Kim, Heo, and Jeong 

2006).  

Nowadays, the development of optimum irrigation has been becoming more and more important with 

a primary role of controlling rate and time of irrigation water to meet crop water demand, while 

constraining losses and preserving water resources (Alhammadi and Al-Shrouf 2013). The soil layer and 

actual value of soil moisture content (SMC) at any given time must be known before any decisions on 

improving irrigation management can be made. In recent years, satellite surface soil moisture has tended 

to be more widely available (Champagne et al. 2016). A water content map can be created, with the 

classification of the high, medium, and low water-content areas (GISTDA) by calculating indices from 

multispectral satellite images from visible (red band) and infrared bands (near infrared and thermal bands) 

(Potić, Bugarski, and Matić-Varenica 2017). In which, Temperature Vegetation Dryness Index (TVDI) 

presents as an indicator of soil moisture in agricultural areas on both local and regional scales (Chen et al. 

2015; Schirmbeck 2017; Gao, Gao, and Chang 2011).  

2. Objectives and scope 

The study aims to determine the smart dam operation system to mitigate water shortage in this 

irrigation project via introduction of machine learning to improve dam operation and irrigation demand 

estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows 

to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The 

input vectors for ANN model are identified base on regression and principal component analysis. The 

structure of ANN (length of training data, the type of activation functions, the number of hidden nodes 

and training methods) is determined from the statistics performance between measurements and ANN 

outputs. On the other hands, the irrigation demand will be estimated by using satellite images, 

LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) 

values are estimated from the plant growth stage and soil moisture.  The values are calibrated and verified 

with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in 

the irrigation project is then estimated from the plant growth stage and soil moisture in the area.  With the 

estimated dam inflow and irrigation demand, the dam operation will manage the water release in the 

better manner compared with the past operation figures in the Ping Basin as shown in Figure 1. 



 

                                               Figure 1 Study area 

The inputs for rainfall runoff model was obtained daily precipitation of 33 stations from RID, HAII, 

and TMD during the year 2009-2018. The rainfall of selected station corresponds with inflow pattern at 

the dam. The maximum distance from the dam to rainfall station is 200km. The daily inflow of Bhumipol 

Dam was utilized to calibrate and validate in rainfall runoff process. The daily reservoir storage capacity 

of the dam was input data for dam release simulation. 

3. Methods used 

       There are three packages in the study system to better the dam operation, i.e., inflow package, release 

package and irrigation demand package. 

a) Inflow package 

Since ANN with one hidden layer is sufficient to solve all problem of the hydrologic process 

(Kolmogorov 1957; De Vos and Rientjes 2005), the architecture of each ANN for hydrology process 

model consists one input layer, one hidden layer, and one output layer. In the training process, the 

interconnected each neuron in hidden layer received signals from the input units through weight 

connectors and biases, then transformed towards the output neuron using log sigmoid activation function. 

Since the appropriate number of dependent nodes for hidden layer is unknown, a trial and- error method 

was adapted to find the best network’s configuration (number of nodes, weights, biases). The training 

network was selected through the best performance of fitting among the neural network predicted values 

and the desired outputs. The linear function was employed as transfer function for ANN because the 

linear function is known to be robust for a continuous output variable. The training of the neural network 

models was stopped when either the goal of error was achieved or the number of iterations exceeded a 

prescribed value. 



The antecedent precipitation, moving mean rainfall, previous inflow is common potential input to 

enhance forecasting ability in the updating case of rainfall – runoff ANN model (Rajurkar, Kothyari, and 

Chaube 2004). Thus, the suitable input variables and proper hidden neutrons of ANN were identified 

from 6 combinations of input variables by virtue of statistic performance (MSE, R
2
) as follows: C1: R(t-

1), I(t-1); C2: R(t-1),  MR(30 days); C3: R(t-1),I(t-1), I(t-2); C4: R(t-1), R(t-2), I(t-1), I(t-2); C5: R(t-1), 

MR(30 days),I(t-1), I(t-2); C6: R(t-1),R(t-2), MR(30 days), I(t-1). Where R means rainfall;  MR is moving 

average;  I presents inflow at the dam 

b) Dam Release Package 

For dam release modeling, the inflow and the capacity from previous time steps are commonly 

inputs for  dam operation modeling (Ehsani et al. 2016). To define the proper input variables and hidden 

neutrons of ANN, six combinations of input variables was evaluated performance training by statistic 

(MSE, R
2
) as follows: D1: R(t-1), C(t-1); D2: R(t-1), C(t-1), I(t-1); D3: R(t-1), R(t-2), C(t-1), I(t-1); D4:  

R(t-1), C(t-1), C(t-2), I(t-1); D5: C(t-2), C(t-1), I(t-1), I(t-2); D6: R(t-1), C(t-1), C(t-2), I(t-1), I(t-2). 

Where C means reservoir capacity. 

c) Irrigation Demand Package 

The main objective of this study was to improve water management based on plant growth and 

soil moisture during dry season by applying satellite images. The crop information and statistical reports 

extracted from satellite imagery were integrated with field data and collateral data and the results were 

analyzed on GIS platform. Figure 2 describes the framework of plant growth and soil moisture estimation 

and their application. 

 

Figure 2 - Framework of the irrigation demand method 

Landsat 8 images acquisition 

Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) images are free 

and have Thermal Infrared (TIRS) bands (Band 10 and 11, 100 m spatial resolution resampled to 30 

meters) that can be used for soil moisture estimation with good spatial resolution. Nineteen multi-date 

LANDSAT are used for this study. The images were rectified and geo-referenced to the WGS 84 datum 

on the UTM coordinate system (Zone 47N)     
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Preprocessing 

The enhanced vegetation index (EVI) was developed to optimize the vegetation signal with 

improved sensitivity in high biomass regions and improved vegetation monitoring through a de-coupling 

of the canopy background signal and a reduction in atmosphere influences. Under clear sky conditions, 

the SWIR spectral bands are highly correlated with the visible (blue, green and red) spectral bands over 

various land covers (Kaufman et al. 2001). A 2-band EVI (EVI2) (Equation below) without a blue band is 

developed and evaluated using global, land cover specific, and local scale satellite data (Jiang et al. 2008). 

        
       

            
 

The Normalized Differential Vegetation Index (NDVI) is a standardized vegetation index which 

Calculated using Near Infra-red (Band 5) and Red (Band 4) (Tucker 1979) shown in equation below: 

     
       

       
 

The linear combination of Normalized Differential Vegetation Index (NDVI) - Land Surface 

Temperature (LST) typically shows a strong negative relationship and the Temperature Vegetation 

Dryness Index (TVDI) can be estimated from the dry and wet edges of the triangle (Sandholt, Rasmussen, 

and Andersen 2002). In the feature space, TVDI is also computed based on information about the wet 

edge representing the minimum LST (LSTmin, maximum evaporation and thereby, unlimited water 

access) as straight line parallel to the NDVI axis. Therefore, the TVDI is related to soil moisture status is 

high values indicating dry conditions and low values indicate moist conditions. The TVDI of each pixel 

can be defined using equation below: 

     
           

               
 

Where the land surface temperature (LST) is the temperature of the Earth’s surface as derived 

from remotely sensed thermal infrared data (Weng, Fu et al. 2014). The Landsat 8 LST was computed by 

fusing images of MODIS LST and Landsat 8 brightness temperature (Tb), provided by Hazaymeh and 

Hassan (2015). 

LST = (BT / 1) + W * (BT / 14380) * ln(E) 

Where BT is Top of atmosphere brightness temperature (°C), W = Wavelength of emitted 

radiance and E = Land Surface Emissivity 

Soil moisture content estimation 

A soil moisture estimation model is established by using a collection of soil moisture observation 

and remote sensing data. A stepwise multiple regression approach was used to assess the relationship 

between observed soil moisture data and remote sensing data, i.e., TVDI were used as independent 

variables. The model can be computed by a regression formula as follows: 

Estimated soil moisture = a + b (TVDI) 



Where, the estimated soil moisture is given as a percentage (%), and a, b are the coefficients of 

the regression lines of the TVDI. 

Irrigation demand estimation 

Crop water demand are defined here as "the depth of water needed to meet the water loss through 

evapotranspiration (ETcrop) of a disease-free crop, growing in large fields under non-restricting soil 

conditions including soil water and fertility and achieving full production potential under the given 

growing environment". This water can be supplied to the crops in various ways such as by rainfall, 

irrigation or a combination of irrigation and rainfall. In this study area, part of the crop water need is 

supplied by rainfall and the remaining part by irrigation. In such cases, the irrigation water demand is the 

difference between the crop water need (ET crop) and that part of the rainfall which is effectively used by 

the plants (Pe). In formula:  

IWD = ETcrop – Pe =Kc*ETo – Pe 

where Pe is effective rainfall and ETo is reference crop evapotranspiration which can calculated based a 

three-stage procedure of Allen et al. (1998).  Besides, total water demand of irrigation area can be 

estimated by using EVI2 coefficient to define growth stage and NDVI to distribute crop area. 

4. Results 

a) Inflow package  

The ANN with a combination of previous rainfall and two consecutive days of inflow presented 

the best performance. The structure consists of 14 neurons in its hidden layer. The RMSE of calibration 

and validation are 6.99 mcm, and 6.0 mcm, respectively. The R
2
 of calibration and validation are 0.92 and 

0.9, respectively. Although, the output of ANN model C4 showed agreement with target inflow, its fail to 

simulate peak flow (Figure 3a). The rainfall input was obtained from 33 stations, so it is unsurprisingly 

that ANN network was become complex with many redundant weights and caused inadequate outputs. To 

illuminate this problem, the precipitation was connected to conveniently input layer before transfer to 

hidden layer (see Figure 4). The performance of ANN was improved when the output was close to peak 

flow (see Figure 3b an Figure 5). The RMSE of ANN with conveniently input layer for calibration and 

validation are 5.3 and 3.9, respectively. The R
2
 is 0.92 for training process and is 0.89 for validating 

process. 

 
a) 

 
b) 



Figure 3- Results inflow of ANN a) Without conveniently input layer b) with conveniently input layer 

 

Figure 4- Structure of ANN with conveniently input layer for rainfall-runoff 

 

Figure 5 - Cumulative distribution function of inflows 

b) Dam release package 

  The combination of two consecutive days of capacity and inflow presented the best 

performance. The structure consists of 4 neurons in its hidden layer. The RMSE of calibration and 

validation are 5.33 mcm, and 3.912 mcm, respectively. The R
2
 of calibration and validation are 0.92 and 

0.95, respectively. Moreover, the cumulative distribution function curve of output is similar with the 

observations (see Figure 6b). Although, the simulation could not carry some immediately high release 

dam, the ANN is possibility to predict dam release following the current rule curve. 

 
a) 

 
b) 

Figure 6 - Performance dam release simulation (a. dam release in time series, b. CDF curve of dam 

release) 
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c) Plant growth stage and crop area distribution 

Percentage of cropland areas for irrigation area in Khamphangphet for each of growth stage, 

estimated using NDVI time series, showed good agreement with the percentage of report planted. For 

starting and harvesting period, the percentage of the cropland area seems to be smaller due to the 

greenness level of paddy. Area of paddy can be estimated with more accuracy during the heading time of 

the plant. See detail in Table 1. 

Table 1 - Cultivated paddy area based on NDVI classification 

Zone 
Cultivated ratio (%) 

Cultivation area (rai) 

Estimated Report 

19-Jan 4-Feb 20-Feb 8-Mar 24-Mar 9-Apr 25-Apr Average      

1 36% 47% 48% 51% 52% 49% 36% 46% 134,219   

2 45% 36% 31% 43% 47% 49% 45% 42% 98,225   

3 48% 45% 44% 49% 50% 53% 46% 48% 135,871   

Total                 368,315 380,557 

Remarks: One rai equals to 0.16 hectare. 

The growing season of rice is divided into eight phases where each phase has a different time 

span and also depends on crop species. In rice phenology, the greenest leaf color happens in the panicle 

initiation phase before the rice starts to flowering because the phonological pattern were based on EVI 

value or based on green index of rice. 

From the pattern of time-series vegetation index, cropping period and frequency can be detected. 

In this paddy area, the growth will reach maximum at the panicle initiation (middle of March) where for 

variety rice it will take 55-60 days from germination phase (late of January) (Figure 9). The time series of 

EVI2 also presented the closed fluctuation with crop coefficient (Kc) which was observed and estimated 

in many years. Figure 7 showed the distribution of EVI2 over the irrigation area. Around middle of 

March, this phase will be detected by the EVI value as the highest value and then the EVI value will 

decrease when the rice plant started to flowering and then harvested.  

 

Figure 7 - Comparison of mean EVI2 values and crop coefficient (Kc) 
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Linear regression models of soil moisture estimation show in Figure 8a were calculated using the 

modified TVDI as dependent variables and observed soil moisture (from GISTDA) as the independent 

variable. The model constructed from TVDI index has the strong response to the actual soil moisture and 

likely a good ability to accurately estimate soil moisture based its high adj-R2 (0.6) and low RMSE (2%). 

The function was verified by comparing observed soil moisture content (SMC) at two observed 

locations in Phitsanulok area with estimated SMC which was applied the function and TVDI values. Six 

Landsat 8 images were used to estimated TVDI and SMC at two locations. The estimated values of SMC 

presented a good correlation with observed values (adj-R
2
 = 0.5876) (Figure 8b). Therefore, the function 

of SMC, which mainly based on variation of TVDI value, can be applied for other area to estimate SMC 

during dry season. The spatial distribution map shows the percentage of soil moisture in the Irrigation 

area is moderate in the mid of the dry season at around 20-30 % for bare soil and 30 to 40% for paddy 

fields (see Figure 9). 

   

a) b) 

Figure 8 - a) Correlation between TVDI coefficient and observed soil moisture content from GISTDA; b) 

Verification estimated SMC and observed SMC in Phitsanulok area. 

 

Figure 9 - Spatial distribution of soil moisture by applying the modified TVDI in the Irrigation area 

y = -21.485x + 44.781

R² = 0.6343

10

20

30

40

50

0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
o

i
l
 m

o
i
t
u

r
e
 c

o
n

t
e
n

t
 (

%
)

TVDI

R² = 0.5876

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.20 0.25 0.30 0.35 0.40

E
s
ti

m
a
te

d
 S

M
 (

%
)

Observed SM (%)



 

d) Irrigation demand 

Table 2 shows the estimation of the irrigation water demand of whole irrigation area. The 

estimated demand is highest in March due to heading and ripening period of paddy. During logging and 

harvesting period in April, the demand increased to about 65 MCM/month. 

Table 2 - Results of irrigation water demand estimation during dry season 2018 

 

Based on the water loss from agricultural fields due to evapotranspiration and conveyance, 

irrigation water demand for the command area was calculated from January to April 2018. In this study, 

the net irrigation water demand was computed on monthly. 

Table 3 – Summary of irrigation supply-demand ratio in the year 2018

 

 

Figure 11 – Monthly amount of irrigation water demand/supply and soil moisture 
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January 3.21 0.00 0.000 3.26 1.07 0.104972 5.84E+08 61.30

February 14.16 0.80 0.011 3.91 1.37 0.161092 5.84E+08 87.46

March 15.34 0.80 0.012 4.35 1.44 0.1872675 5.84E+08 102.19

April 48.61 0.80 0.039 5.01 1.01 0.151803 5.84E+08 65.94
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e) Release decision making via smart system development 

    Previously, the dam operation is set by demand estimate from the past average record and 

controlled by upper and lower rule curve. With the developed rainfall-inflow-release data from ANN and 

soil moisture based irrigation demand, the dam release can be reoptimized with the more real time 

information to get up-to-dated inflow and demand figures as shown in Figure 12. 

 
Figure 12 – Approach for dam release decision making via smart system development 

 5) Conclusions 

ANN technique can capture the inflow from rainfall data and dam release from dam storage while 

satellite images with ground soil moisture sensor data helped to estimate irrigation demand in near real 

time and accurate enough for development of smart dam operation system. The results show how smart 

system concept was applied and improve dam operation by using inflow estimation from ANN technique 

combining with irrigation demand estimation from satellite images when compared with the past 

procedure which is a step to develop the smart dam operation system in Thailand. 
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