Workshop on the Study of AloT Weather Forecast System Technology in Thailand Dr. Tony Song, Dr. Xiangming Sun, Dr. Miao Lin

Copyright © 2018 Envision. All rights reserved. Confidential - Not for unauthorized distribution

Project Schedule

			Month																	
ID	AloT Weather Forecast System Project Schedule	Duration	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Proposed Overall Schedule	360 days																		
	Kick Off Meeting Dynamic downscaling the NWP data to 1km by 1km	1day																		
	Resolution and compare and share the results monthly starting from 2nd month.	180 days																		
	Applying machine learning algorithms to the calibrated NWP data for further improve the accuracy. The result will be compare and share monthly. An User Interface will also be																			
4	developed to visualize the weather forecast data.	180 days																		
5	Deliver operational forecast data for 6 months.	180 days																		
6	Final Report with Recommendations	1 day																		
7	inal Meeting and Future Roadmap 1 day																			

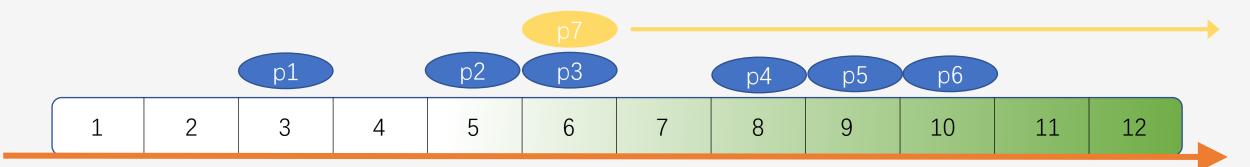
Solution Plan – development timeline

- p1 Preparation: observation data, weather pattern analysis, prepare first workshop
 - Build *temperature* forecast model pipeline
 - Build *humidity* forecast model pipeline

p2

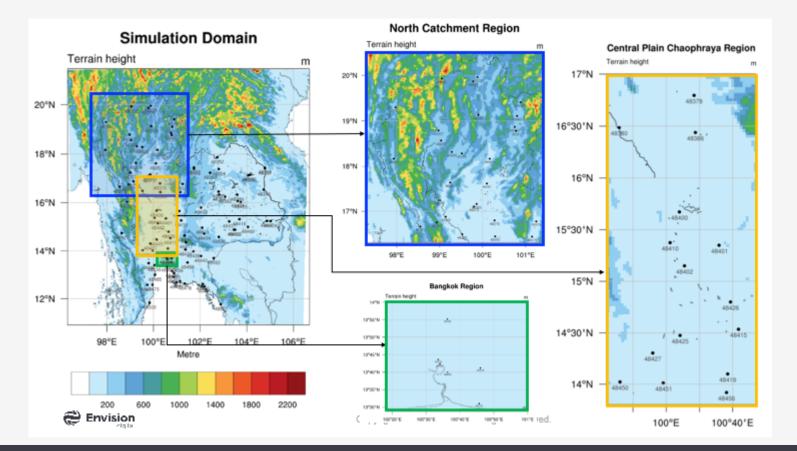
D3

Build *rainfall* forecast model pipeline and evaluate/tune *temperature/humidity* model

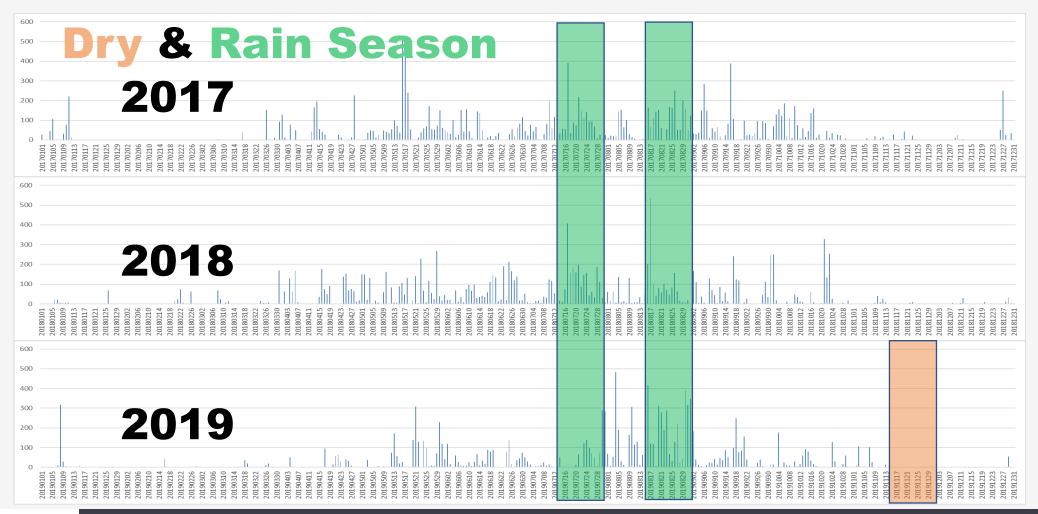


- Build *wind* forecast model pipeline and evaluate/tune *rainfall* model
- Evaluate/tune *wind* model

p6


Optimize models for a particular area / region

NWP Modelling Progress


- Completed optimisation process for dry and rain season
- Evaluated model performance over the two optimisation period
- Prepared workshop on NWP modelling including a preliminary analysis for the three zones:

Next Step for NWP modelling

• Prepare training data set for machine learning algorithm, focusing on rain seasons

Machine Learning Workshop Materials

First session

- EnWeather Data Science overview (1hour): link
- Use machine learning model for weather forecast (45min): link
- Lab session:
 - Use xgboost model for weather forecast (1hour): link

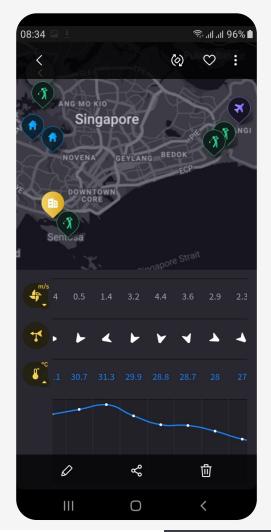
Second session

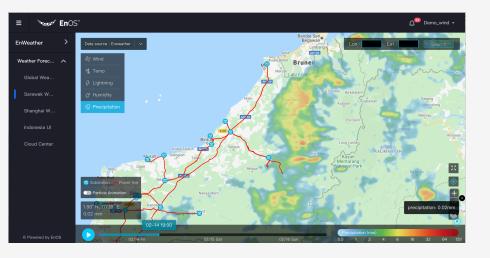
- Use deep learning model for weather forecast (1hour+): link
- Lab session
 - Use Pytorch for weather forecast (1.5hours): link

Observation Requirement

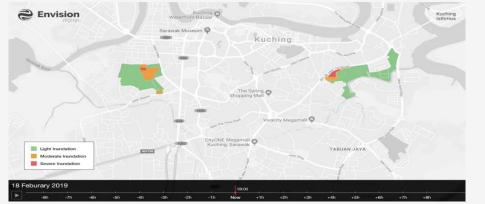
Weather attributes	Learning target	Periods	Frequency	Properties
Rainfall	Station	At least 1 year	Hourly / 3 hourly	Small coverage, accurate
	Radar image	At least 6 months, L3/L2/ Image format	5 minutes / 15 minutes	Large coverage, whole domain, less accurate
	GPM			Self-collected, less accurate than Radar
Temperature	Station	At least 1 year	Hourly	
Humidity				
Wind				

Publication or Patent

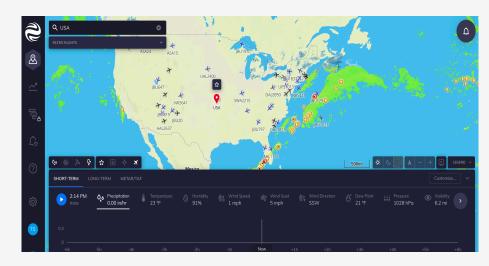


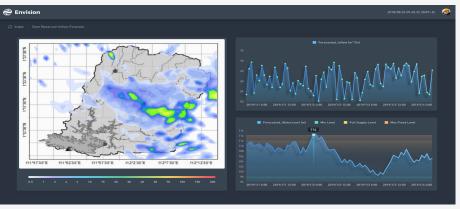

Co-develop Application

Mobile App



Envision


Reservoir and Grid


Flash Flood

Aviation

Hydro Energy

www.envision-group.com

Thank You

