EnWeather Data Science: Using Machine Learning models for Weather Forecast Envision Digital DS Team

Copyright © 2018 Envision. All rights reserved. Confidential – Not for unauthorized distribution

Content

Part 3 XGBoost for wind forecast Part 4 XGBoost for rainfall forecast

Al flowchart

https://www.technologyreview.com /s/612404/is-this-ai-we-drewyou-a-flowchart-to-work-it-out/

Machine Learning Flowchart

From massive amount of data to find useful patterns!

https://www.technologyreview.com/s/61243 7/what-is-machine-learning-we-drew-youanother-flowchart/

Machine Learning Algorithm Classification

- Unsupervised learning
 - No labelled data is used
 - The machine just looks for whatever patterns it can find
 - Application: cybersecurity <u>https://www.readitquik.com/articles/security-2/why-unsupervised-machine-learning-is-the-future-of-cyber-security/</u>
- Supervised learning
 - Use labeled data or ground truth
 - tell the machine exactly what patterns it should look for
 - Many popular applications
 - Netflix: find similar show for you
- Semi-supervised learning
 - Mix small amount of labelled data with large unlabelled data
- Reinforcement learning
 - learns by trial and error to achieve a clear objective.
 - It tries out lots of different things and is rewarded or penalized depending on whether its behaviors help or hinder it from reaching its objective.
 - AlphaGo

Build Machine Learning Model Key Processes

XtremeGradientBoost (XGBoost) Introduction

- XGBoost is a *decision-tree* based *ensemble* Machine Learning algorithm that uses a *gradient boosting* framework
- Developed by a research project at the University of Washington
- First presented by Tianqi Chen and Carlos Guestrin at SIGKDD conference in 2016
- Extremely popular in Kaggle competitions and many industry applications
- XGBoost open source project
 - <u>https://github.com/dmlc/xgboost</u>

"When in doubt, use XGBoost" — Owen Zhang, Winner of Avito Context Ad Click Prediction competition on Kaggle

Evolution of XGBoost algorithm

Source: https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d

Evolution of XGBoost algorithm (1)

- Decision Tree
 - A supervised learning algorithm
 - Has tree representation.
 - Each **internal node** of the tree corresponds to an attribute, and each **leaf node** corresponds to a class label.
- Bagging
 - Boostrap aggregation
 - constructs n classification trees using bootstrap sampling of the training data
 - Resample data with replacement
 - combines their predictions to produce a final meta-prediction
- Random forecast
 - A supervised learning algorithm
 - Based on DT and Bagging
 - For each tree, a subset of features are used.

Evolution of XGBoost algorithm

- Boosting
 - A generic algorithm rather than a specific one
 - From a series of weak learners to a strong learner
 - Model are built sequentially by minimizing the error from previous model
- Types of Boosting algorithm
- 1. AdaBoost
 - For classification problem
 - Identify miss-classified points and increase their weights in the next round
- 2. Gradient Boosting
 - For both classification and regression problem
 - Define weak by the different between pred. and actual
 - Need differential loss function to calculate error.
- Xgboost
 - DT + Gradient Boosting + a series of optimization

One is weak, together is strong, learning from past is the best

Why XGBoost algorithm is so good

Parallelization

- Utilize parallel processing, use multiple CPUs to execute the model
- A series of tree cannot build in parallization but build each tree can be parallelized

Regularization

- L1: lasso regularization, select features (force weights toward 0)
- L2: ridge regularization, smooth features (force small weights over param.)
- To avoid too complicated tree

Efficient tree pruning

- max depth to control tree grow
- prune the tree backwards and remove splits beyond which there is no positive gain.

and sorting using parallel threads. This switch improves algorithmic

.....

How to use XGBoost in Weather Forecast

Use XGBoost for wind speed forecast

- Use cases
 - Optimize wind speed forecast for each wind turbine -> help to estimate wind power
- Stacking of single layer machine learning models
 - use multiple nwps
 - reduce the bias for each nwp

Use XGBoost for rainfall forecast

- Multi-layer single machine learning models
 - First layer rainfall probability
 - Second layer rainfall volume
- Each nwp have very different rainfall pattern
 - EC tends to have more rain
 - IBM tends to have less rain
 - Merge them together may get inconsistent results

Weather Forecast Pipeline using Machine Learning

Use Xgboost for wind speed forecast: entry-level

Inputs	Pre- processing	Feature engineering	Model	Model stacking
 NWP: Nearest grid forecasts: ws, wd, tmp, pres, rho Nearby forecast Obs Wind speed from turbines 	 Match nwp + obs by time Handle invalid ws Smooth ws to reduce errors 	 Basic features Nearest/nearby grid attrs. Temporal shifted nearby grid attrs. Delta features: changes within spatial-temporal aspect 	 Define model type: reg. vs clas. Define para. Space Search for the best param. Generate the model 	 Use different nwp + obs comb. Generate multiple models Use a simple model to combine the results: LR

What makes a good wind speed model

Building a wind speed xgboost mode is easy but...

Use XGBoost for rainfall forecast: advanced level

Rainfall forecast challenge

• Location + intensity

Difference with wind speed forecast

- More weather attributes are used
- Complicated data preprocessing to handle noise and errors
- Advanced feature engineering
 - point level features + region level features
- Two layers of modelling
 - Use XGBoost for both classification problem and regression problem

Use XGBoost for rainfall forecast: inputs

Surface level attributes + pressure level attributes

- Features from different levels are more important
- Possible attributes can be
 - Humidity, QV, QC, wind speed, etc.

Humidity shows a significant difference for rain and non-rain case!

Use XGBoost for rainfall forecast: preprocessing

Data cleaning/noise filtering	 Invalid rainfall: single and very small region rainfall Unsupervised learning to filter noise DBSCAN (density based clustering algorithm)
Reduce spatial-temporal errors	 For both NWP data and GPM data Time domain smoothing: fix window smooth, (+-1hour) Spatial domain smoothing: redistribute rainfall in nearby area. Gaussian filter
Aggregation	 Use a few hour aggregation Spatial aggregation: max pooling, etc.

Use XGBoost for rainfall forecast: features

Use XGBoost for rainfall forecast: modelling

Use XGBoost for rainfall forecast: performance

Thank You

