Study of AloT Weather Forecast System Technology in Thailand

Machine Learning Dr. Miao Lin

Copyright © 2018 Envision. All rights reserved. Confidential - Not for unauthorized distribution

Agenda / Monthly Report Template

- Preparation / Misc
 - Overall architecture / plan
 - Observation data
 - Machine learning workshop
- Model Development
 - Temperature / humidity model : %
 - Rainfall model: %
 - Wind model: %
- Monthly Evaluation
 - Latest month evaluation
 - Performance comparison (comparison with other NWPs: IBM, EC)
 - Explanations, issues studied etc.
- To-dos

Overall Architecture

Solution overview: Temperature / Humidity Forecast

- Input data
 - NWP Data
 - Global forecast: GFS, EC
 - Our own forecast: WRF
 - Weather attr. from surface level
 - Observation data
 - Thailand weather station data

- Feature set
 - Common features
 - Features at surface level

- Single layer modelling
 - First layer
 - Modeling temperature directly

- Target data
 - Use station data as the learning target

- Weather data clustering and preprocessing
 - Weather pattern clustering

Solution overview: Rainfall Forecast

- Input data
 - NWP Data
 - Global forecast: GFS, EC
 - Our own forecast: WRF
 - Weather attr. from various level
 - Observation data
 - GPM: global rainfall data
 - Thailand weather station data
 - Radar image data
- Target data
 - Use GPM as the learning target
 - Combine GPM and station data
- Weather data clustering and preprocessing
 - GPM smoothing
 - Map station data and GPM data

- Feature set
 - Common features
 - Features at various pressure level
 - Features between different level

- Two layers of modelling
 - First layer
 - Modeling rainfall probability
 - Second layer
 - Modeling rainfall volume

Solution plan – Main principles

- One model per weather attribute (at least)
 - Rainfall, temperature, humidity, wind: 4 different models
- Pipeline first, accuracy later
 - Use less challenging attribute to build the machine learning pipeline
 - Difficulty order
 - rainfall > wind > temperature = humidity
 - Deploying order
 - temperature & humidity -> rainfall -> wind

- Improvement strategy
 - Model retrain / tuning
 - Use latest / most relevant observation
 - Tune input weather attributes
 - Design model per area per season
 - New model design / development

Technical Stack for machine learning components

- Machine learning techniques
 - Linear modelling
 - Tree-based modelling
 - Time series modelling
 - Deep learning models
 - CNN, LSTM
 - ConvLSTM, TrajGRU
 - 3D Conv in CNN
 - GAN
 - Model ensemble
 - Feature selection / reduction

- Other techniques
 - Data query: *sql, mongoDB*, etc
 - Working environment: *Linux, Bash*
 - Code review / management: git
 - Python environment: *miniconda*
 - Regular forecast job: *crontab*

Solution Plan – development timeline

- p1 Preparation: observation data, weather pattern analysis, prepare first workshop
 - Build *temperature* forecast model pipeline
 - Build *humidity* forecast model pipeline

p2

p3

Build *rainfall* forecast model pipeline and evaluate/tune *temperature/humidity* model

- Build *wind* forecast model pipeline and evaluate/tune *rainfall* model
- Evaluate/tune *wind* model

p6

Optimize models for a particular area / region

Observations: general requirements

Weather attributes	Learning target	Periods	Frequency	Properties
Rainfall	Station	At least 1 year	Hourly / 3 hourly	Small coverage: a few Grid pointsMost accurate
	Radar data or image	At least 9 months in rainy season (July, Aug, Sep 2017~2019)	5 minutes	Large coverageWhole domainLess accurate
	GPM		30 minutes	 From AloT platform Good coverage gridded product Less accurate
Temperature / humidity / Wind	Station	At least 1 year	Hourly	
Upper air sounding		At least 1 year	6 or 12 hourly	 Accurate upper air measurement Less frequent Poor coverage

Observations analysis (1)

data	No. of Stations	Periods	Freq.	Usage	Issues
tmd_weather3Hours	126	1 month	3 hour	ML model learning targetevaluation	Short periods, better more than 6 months

Observations analysis (2)

Rainfall comparison between TMD data and weather station data from website

- http://www.aws-observation.tmd.go.th/web/reports/weather_minute.asp
- Use Mae Hong Son as an example (in blue circle)
- Some inconsistency for raining cases
- Suggestion: get more data for long term comparison

2019-12-28 TMD vs web

10

8

6

2

0

Rainfall

Observations analysis (3)

From TMD

data	No. of Stations	Periods	Usage	
rain_tmd_2017-2019	12	3 years: 2017-2019	DailyOne record per day	Evaluation only

Issues:

- Low frequency, cannot use in modelling, better hourly / 3 hourly
- No lat/lon for each station

Observations analysis (4)

Observation data for two dams

	Sirikit dam catchment	Bhumibol dam catchment
Location	Lat: 17.76Lon: 100.56	Lat: 17.24Lon: 98.97
File TMD 2017-2019	Cannot verify	Cannot verify
File TMD 3 hours	 No nearby record Nearest one is UTTARADIT (17.61, 100.1) ~70km 	 Station: 48377 (17.24, 99.002), ~4km No raining from 2019-12-09 to 2020-01-09
File Web	No nearby recordNearest one same as above	 Station 6: same No raining from 2019-12-09 to 2020-01-09
Remarks	 Need to have a nearby weather station ~10km With raining period records From July to Sep yearly 	With raining period recordsFrom July to Sep yearly

GPM calibration

GPM calibration: methodology

- Correct on hour interval basis can offset geographic error
 - 3, 6, 8 and 24 hours summation
- Match distributions
 - Filter small rainfall cutoff point
- Region to point
 - Add more nearby rainfall information to the points, e.g., 5*5, 7*7, 9*9
- Linear regression
 - Principal component analysis
- Neural network model
 - Learn region feature to point

GPM calibration: results

Hour 09	Hour 1
	ESC:

Before calibration

After calibration

Hour aggregation	GPM loss vs station	ML loss vs station
3	7.48	4.86
6	12.94	7.59
8	16.03	8.93
24	32.58	16.76

Machine Learning workshop

Topic 1: use machine learning in weather forecast overview

- Weather forecast overview
- Why / How to use machine learning in weather forecasts?
- Performance overview of using machine learning in weather forecast
- Customer uses cases
- Q&A

Topic 2: case study of weather forecast using machine learning models

- Case study 1
 - rainfall forecast using multi-layer XGBoost
 - 25 minutes
- Case study 2
 - Wind speed forecast using deep learning models
 - 25 minutes
- Q&A

Thank You

Appendix

Project Schedule

			Month																	
	AloT Weather Forecast System																			
ID	Project Schedule	Duration	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	Proposed Overall Schedule	360 days																		
2	Kick Off Meeting	1day																		
	Dynamic downscaling the NWP data to 1km by 1km																			
	Resolution and compare and share the results monthly																			
3	starting from 2nd month.	180 days																		
	Applying machine learning algorithms to the calibrated NWP																			
	data for further improve the accuracy. The result will be																			
	compare and share monthly. An User Interface will also be																			
4	developed to visualize the weather forecast data.	180 days																		
5	Deliver operational forecast data for 6 months.	180 days																		
6	Final Report with Recommendations	1 day																		
7	Final Meeting and Future Roadmap	1 day																		

Communication Protocol

Communication Methods: LINE, Email, Zoom Meeting

- Downscaling Sun Xiangming, <u>xiangming.sun@envision-digital.com</u>
- Machine Learning Lin Miao, <u>miao.lin@envision-digital.com</u>
- General / Commercial matters Henry Tay, <u>henry.tay@envision-digital.com</u>
 - Tony Song, guiting.song@envision-digital.com

