ASEAN Academic Networking in Water, Disaster Management and Climate Change

HYDROCLIMATE PROJECTIONS TO ENGINEERING PRACTICES FOR ADAPTATION MEASURES IN WATER RESOURCES SECTOR

Research Centre for Water Resources and Climate Change National Hydraulic Research Institute of Malaysia Ministry of Natural Resources & Environment

28 January 2015

Bangkok, Thailand

OUTLINE

1 WATER MANAGEMENT ISSUES & CHALLENGE

- 2 LINKAGES OF CLIMATE & NON-CLIMATE FORCING
- 3 KNOWLEDGE PATHWAYS TO ENGINEERING PRACTICES

KNOWLEDGE PATHWAYS TO ADAPTATION POLICIES

Thailand Floods, Jul 2011-Jan 2012...

Thailand's worst flooding in 50 years.. Estimated economic loss > USD45 billion.. 13.6 million affected.. >800 deaths..

Jakarta Floods, Jan 2013..

Estimated economic losses USD3.3billion... 320,000 people displaced.. >40 deaths...

Typhoon Haiyan, Philippines, Nov 8 2013..

urces

4.1 million without homes..
5.9 million workers lost incom
1,785 missing..
6,200 deaths..

Pakistan Floods, Sept 2014..

Worst flood in Pakistan history.. 2.5 million affected.. 367 deaths..

Mudflood in Cameron Highland, Malaysia Oct 23, 2013 & Nov 5, 2014...

Dam release due to heavy downpour & upstream flooding.. > 80 houses destroyed.. 6 deaths..

Kelantan Floods, Malaysia Dec 14-24, 2014..

Continuous heavy downpour & upstream flooding.. > many properties & infrastructures destroyed.. 25 deaths..

.....water management issues....

water excesses, water shortages, water pollution

...due to non-climatic & climatic forcing...

....be more complicated in water sector due to.....

Source: SREX Report (IPCC, 2011)

a changing climate leads to change in extreme weather and climate events would contribute to water related disaster (water excess)

Water managers & climate change

- two major challenges in a changing climate:
 - How to integrate & coordinate issues of non-climatic and climatic forcing
 - How to build resilience or adapt to climate change impacts
- Acting with the knowledge of climate change scientific findings which are
 - Uncertainty over timing, nature, magnitude of change
 - Costs and benefits difficult to calculate

....linkages of climate & nonclimate forcing.....

NON-CLIMATIC FORCING

CLIMATIC FORCING

(Temperature, Wind, Pressure, Radiation, Rainfall)

IMPACTS

.....and increasing exposure of people and assets would be the major cause of changes in disaster losses.....

.....but how we can "cushion" this impacts (climate and non-climate forcing)...?

.....through mitigation & adaptation processes

ADAPTATION & VULNERABILITY IMPACT ASSESSMENT

pro-active adaptive management – water infra with buffering capacity, robustness & resilience to climate change & variability

Impacts & vulnerability assessment Water supply, floods, ecosystem, infrastructure, road, etc

Adaptation options & measures

CLIMATIC DRIVEN

NON-CLIMATIC DRIVEN FACTOR

....pathways of engineering practices and adaptation processes.....

.....how it can be done? ...develop climate knowledge base & bridge the gap of science, engineering & socio-economics

.....pathways from knowledge to adaptation practices.....

NAHRIM

....develop climate change knowledge & capacity building......

...pre-requisite to have knowledge in climate change modeling and projection.....

- Impacts of Climate Change on Hydrologic Regimes and Water Resources for Peninsular Malaysia (NAHRIM, 2006)
- Impacts of Climate Change on Hydrologic Regimes, Water Resources and Landuse Change for Sabah & Sarawak (NAHRIM, 2010)
- Climate Projection Downscaling for Malaysia Using Hadley Centre PRECIS Model (NAHRIM, 2010)
- Impacts of Sea Level Rise (SLR) for Malaysia (NAHRIM, 2010)
- Extension of the Study of the Impact of Climate Change on the Hydrologic Regime and Water Resources of Peninsular Malaysia (NAHRIM, 2014)

FUTURE HYDRO-CLIMATE DATA BASE

		Type of Projected Hydroclimate Data								
Data Resolution	Mode of Data type	Temp.	Rainfall	Flow	Runoff	Evapo- transpiration	Soil Water Storage			
Daily		2/	.1	.1	.1	.1	~			
	Total									
	Mean		water resources-supply							
Monthly	Minimum		availability & drought assessment							
	Maximum									
Anually	Total			455						
Anuany	Mean									
	1-day				,					
	2-day		floods assessment, planning							
Maximum	3-day	•								
	5-day			and	i design	•••				
	7-day									

http:www.futurehydroclimate.nahrim.gov.my

...revisit climate change modeling and projection for Peninsular Malaysia.....

6km x 6km

- **2006 Downscaling** Canadian GCM1 (~ 410km resolution), to **fine spatial resolution** (~9km)
- Extention study:
 - 3 GCMs MPI-ECHAM5, CCSM3 and MRI-CGCM2.3.2
 - 15 scenarios SRES A1B (5), B1 (5), A2 (1) and A1Fi (1)
 - Downscaling GCMs (~150-310km) to watershed scale spatial resolution of 6km
 - Hourly time interval resolution
 - Completed in July 2014)

....climate change in Malaysia....

...impacts assessment for 11 watersheds & 12 coastal regions.....

Projected High and Low Flows by 2100 – Peninsular Malaysia (NAHRIM, 2014)

Low Flow (m³/s)

Watershed	2010-2100	1970-2000*	Rate of change
Muda	7.5	14.5	-48%
Selangor	117.7	12.2	-4%
Kelantan	52.3	92.7	-44%
Pahang	27.2	53.6	-49%
Johor	25.3	32.9	-23%
Linggi	1.0	2.6	-62%

High Flow (m³/s)

&	Watershed	2010-2100	1970-2000*	Rate of Change
	Muda	2702	509	+430%
	Perak	9937	2658	+274%
	Selangor	1195	583	+108%
	Klang	319	148	+115%
	Kelantan	10115	40875	+147%
	Dungun	671	414.9	+62%
	Pahang	4561	2748	+66%
	Muar	2630	401	+556%
	Batu Pahat	283.2	101	+180%

Note: 1970-2000* - simulated historical period

Projected High and Low Flows by 2100 – Sabah & Sarawak

....develop climate change engineering knowledge, methodology & design standards.....

.....common questions in water resources engineering

- How high should a bund be, and what is the risk to those living behind it?
- How to manage a reservoir to accommodate uncertain runoff?
- How safe is the structure under extreme flood conditions?
- What criteria should be used to "recertify" flood mitigation structures?
- What flood frequency distribution should be used in a particular analysis to accommodate climate uncertainty?

Technical Guide No. 1: Estimation of Future Design Rainstorm under the Climate Change Scenario in Peninsular Malaysia (2013)

NAHRIM Technical Guide No. 1

TECHNICAL GUIDE

OBJECTIVES:

- To assist engineers, hydrologists and decision makers in designing, planning and developing water-related infrastructure under changing climatic conditions.
 - To introduce an approach of quantifying the scale of climatic change to surface water systems.
- To derive climate change factor (CCF)

CCF – defined as the ratio of the design rainfall for each of the future periods (time horizons) to the control periods of historical rainfall)

Projected rain @612mm

....apply engineering methodology for climate change adaptation.....

....how CCF works.....

.....projected magnitude of peak floods with climate forcing....

(a) Item	(b) Time	(c) Climate	Peak Discharges (Q) 100 years ARI				
	Horizon	Change Factor (CCF)	(d) 1-Day Design Rainfall (Baseline= 240.6 mm)		(e) Baseline 8 mate Char enario Flo agnitude, 0 seline= 204 m ³ /s)	(f) Climate Change Scenario Floods Magnitude (m ³ /s)	
1	2020	1.05	245	(2111		63.3[3.1]#
2	2030	1.09	257		2268		220.0[10.7]
3	2040	1.14	268		2430		382.3[18.7]
4	2050	1.19	280		2602		554.0[27.1]
5	2060	1.25	292	l	2785		737.4[36.0]

Note: [3.1][#] denotes as percentage of change in flood magnitude due to increasing design rainfall.

.....projected magnitude of peak floods with climate & non-climate forcing....

(a) Item	(b) Time	(c) Climate	Peak Dis				
	Horiz on	Change Factor (CCF)	(d) 1-Day Design Rainfall (Baseline= 241 mm)	(e) Baseline, CC & Future Landuse (Baseline Q _P = 2048 m ³ /s)	(f) Baseline & Climate Change Q _P (m ³ /s)	(g) Adaptation value (m ³ /s)	
1	2020	1.05	245	2313	2111	266	
2	2030	1.09	257	2477	2268	429	
3	2040	1.14	268	2645	2430	598	
4	2050	1.19	280	2824	2602	776	
5	2060	1.25	292	3014	2785	966	

Note: [3.1][#] denotes as percentage of change in flood magnitude due to increasing design rainfall.

Generated Flood Extent Map Location: Sg Kedah Landuse: Future Rainfall: 2060, 100y ARI

Time	Area for flood depth (km ²)					
horizon	0.01 -	0.5 -	\12m	Sum		
nonzon	0.5 m	1.2 m	×1.2 III			
Baseline	50.50	41.55	35.57	127.62		

Legend River Projected Flood Depth (m) 0.0 - 0.5 0.5 - 1.2 >1.2informing policy maker or planner....by means of economics assessment.....

...knowledge to informing policy making through cost benefit analysis....

NPV (Net Present Value) = Benefit - Cost

- To maintain longterm view in policy-making and planning
- Late action in adaptation may reduce the benefit significantly

Impact of Floods in Kedah Basin

Estimated Flood Damages	2010	2060	The impact of the 2010 floods on Kedah's
Total Flood Damages (RM mil)	503	7,047	economy
Damages to Paddy	78	705	
Damages to Residential & Commercial	244	2,886	(AAD) @ Baseline = MYR 27
GDP	2010	2060	mil
State GDP (RM mil)	18,637	103,989	Annual Average Damage
GDP for Agriculture Sector (RM mil)	1,556	5,221	(AAD) @ 2060 = MYR 74 mil
GDP for Services Sector(RM mil)	8,151	67,994	Current cost of flood
ARI 100 Estimated Flood Impact	2010	2060	abatement program = MYR
Total Flood Damages / State GDP (%)	2.7%	6.8%	221 mil
Damages to Paddy / GDP for Agriculture Sector	4.2%	13.5%	Net Present Value for AAD until 2060 (benefit) = MYR
Damages to Residential & Commercial / GDP for Services Sector	2.4%	4.2%	800 – 1,400 mil
AAD Estimated Flood Impact	2010	2060	
Total AAD Flood Damages / State GDP (%)	0.1%	0.1%	were maintained at current levels.
Annual Average Damage (RM mil)	27	74	

....subsequently, we have to "revisit" existing policy and provides pathway to adaptation measures and policy.....

....pathways from knowledge to adaptation policies.....

.....to strenghtening water related policies...

Economic Planning Unit, Prime Minister's Department of Malaysia

Policy Brief Economics of Climate Change in Malaysia

(ECCM)

Department Of Irrigation & Drainage Malaysia

(39) P.P.S 11/12/3 (HP)

JABATAN PENGAIRAN DAN SALIRAN,

MALAYSIA

SURAT PEKELILING JPS BIL. 1 TAHUN 2014

COMPLIANCE WITH THE USE OF 'NAHRIM TECHNICAL GUIDE FOR ESTIMATION OF FUTURE DESIGN RAINSTORM UNDER THE CLIMATE CHANGE SCENARIO IN PENINSULAR MALAYSIA' FOR ALL DESIGN PROJECTS

- Risk assessment for floods
- Mainstream Climate Change in Land Use Planning
- Engage with all levels of Government and Society
- Share best practices in water management
- Invest in Climate Proofing Strategies

.....Summary.....

- MEETING THE CHALLENGE early planning, best available information & modifying existing planning mechanism towards climate resilient
- KNOWLEDGE GAP Pathway to bridge the gap between scientific knowledge into engineering knowledge and practices is developed

THANK YOU

zaki@nahrim.gov.my http:/www.nahrim.gov.my