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Introduction 

Uncertainties in the input data, model structure and model parameters among others render the 
hydrological predictions imprecise1). Data assimilation algorithms such as the ensemble Kalman filter 
(EnKF) which provide a framework to represent and subsequently reduce these uncertainties by 
merging observations into the model continue to receive significant attention in the field of 
hydrological forecasting. While the evidence of the effectiveness of EnKF is abundant in the literature, 
its use in operational forecasting may be limited by its high computational demand as it requires 
multiple runs of the model to characterize the uncertainties. On the other hand, the ensemble 
optimal interpolation (EnOI) algorithm, unlike the EnKF, contains a single model run akin to the 
deterministic simulation except for the correction from the observations. While it does not provide 
any information about the uncertainty in the model predictions, the reduced computational cost of 
this approach makes it an attractive option for real-time implementation. However, the efficacy of 
the EnOI in hydrological data assimilation is not yet completely understood and as such, this study 
aims to investigate the suitability of this computationally inexpensive assimilation algorithm in 
reducing the parameter bias present in a distributed hydrological model. The experiments conducted 
are of synthetic in nature and are applied to a small-scale river basin in Japan. 

Synthetic observation generation and EnKF implementation 

True water level data were first obtained by feeding an assumed true precipitation input to the 
rainfall-runoff-inundation model2) characterized by a spatially uniform true model parameter set. 
These “true” water stages were then perturbed by a predefined noise model to generate the 
synthetic water level observations. Uncertainty in the model was limited to the model parameters 
and was represented by uniformly distributed samples in the parameter space. The EnKF was able to 
correctly approximate the two model parameters (i.e. the manning’s roughness coefficient for the 
river channel and the soil hydraulic conductivity) at the end of the assimilation period as the 
assimilated variable i.e. the river stage was found to be more sensitive to these two parameters. This 
tendency was found to be consistent across different initial parameter uncertainty representations 
and for the two flood events (from 2013 and 2018) tested.  

EnOI implementation 

While the covariance matrix needed for parameter update is calculated based on the ensemble 
anomalies in the EnKF, such estimation is not possible in EnOI as only a single model is integrated 
forward. As such, background ensembles have to be predefined in order to calculate the errors and 
allow for the updates of the state variables (and/or the parameters) with the EnOI. This study used 
the background ensembles from different time steps of the EnKF implementation to calculate the 
covariance matrices and fixed them for the entirety of the assimilation period of the EnOI 
implementation.  At the start of the assimilation, the model parameters were randomly generated 
which were then subsequently corrected by using the pre-specified background and observation 
error covariance matrices. Since a single parameter value was generated for each of the model 
parameters, this was essentially a deterministic model run with the update to the parameters at each 
assimilation step. 
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EnOI was able to reduce the bias in the model parameters to an extent for those matrices which had 
small covariances between the state variables at the observation locations and the model 
parameters. When large gains were allowed by the update, parameters became unstable leading to 
unreasonable water level estimations. In general, EnOI was able to better approximate the channel 
roughness coefficient (also see Fig. 1) likely because of the high sensitivity of the assimilated variable 
to this parameter. Encouragingly, covariance matrices from a previous flood event were also found 
to be effective in a latter flood (“2013 set” in Fig. 1 for 2018 flood). Future works will extend the 
study to other events and model uncertainties including experiments with real data. 
 
Conclusions 
 
This study investigated the efficacy of a computationally inexpensive assimilation algorithm i.e. the 
ensemble optimal interpolation in reducing the biases in the model parameters by using synthetic 
river stage observations for assimilation. Ensemble Kalman filter was first applied to two flood events 
to yield a set of covariance matrices (both background and observation error) which were then 
utilized to update the model parameters of the deterministic model runs. While large magnitudes of 
covariances led to oscillations in the parameters, gradual nudging through small gains led the 
parameters - especially the manning’s n for river - to be close to the truth at the end of the 
assimilation period. 
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Fig. 1: Model parameters (a) manning’s n for river channel and (b) soil hydraulic conductivity (m/s) at the 
beginning (red) and end (blue) of the assimilation period for the 2018 flood. Dotted lines indicate the true 
parameter values and the cases represent different initial values of the parameters. Different point shapes 
represent different covariance matrices (only the results for a select few matrices are shown). The two columns 
“2013 set” and “2018 set” indicate the flood event from which the covariance matrices are taken. 




