Moving Towards a Sustainable Water and Climate Change Management After COVID-19

📺 26 - 28 January 2022

(GMT+7 Bangkok)

The Calibration Curve for Irrigation Reservoirs by Survey Tool Innovation

Somyot Kaewmora^{1st}, Thisana Sereekhodchahiran^{2nd}, Narongsak Sopawararat^{3rd}, Nipon Yupa^{4th}, and Porntipa Pinthong^{5th}

¹²³⁴Ground Survey Division and ⁵GeoInformatic Technology Division Bureau of Engineering topographical and Geotechnical Survey Royal Irrigation Department (RID) Bangkok, Thailand

Contents

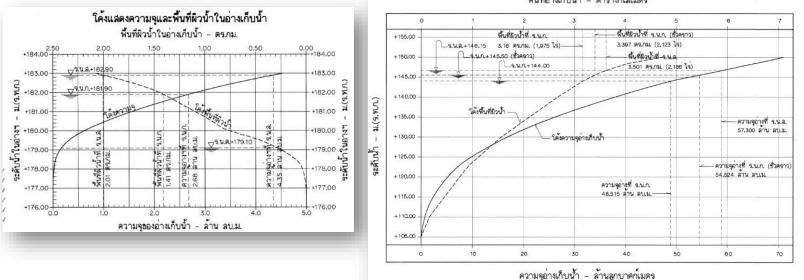
- Introduction
- Objectives
- Methodology
- Results
- Conclusions and Suggestions

Introduction

RID's mission

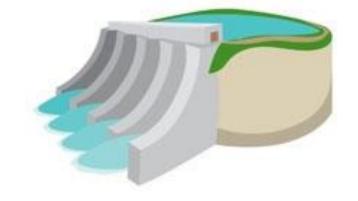
- •To develop water resources and to increase irrigation area according to their potential and natural balance
- •To manage water resources in adequate, thorough and equitable manners

- •To appropriately prevent and mitigate water hazards
- •To encourage people participation in water resources management and development





 RID is particularly responsible for operating and managing irrigation water efficiency to water use objectives



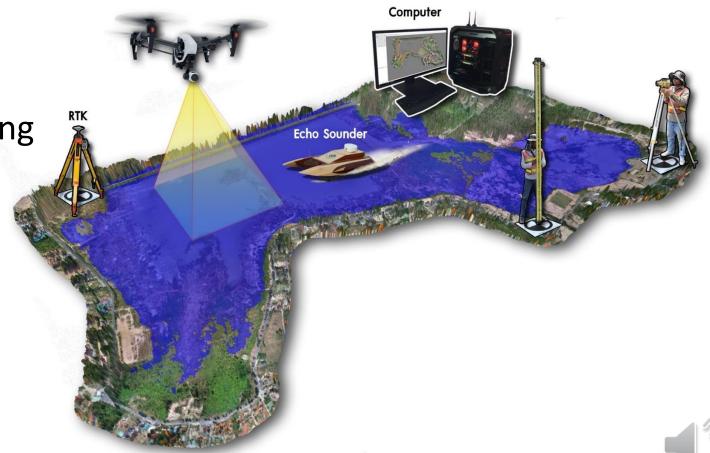
- Several of dams and reservoirs in responsibility of RID have been used for very long time
- The traditional surveying methods in the past is obsolete

Objectives

- To improve the accuracy of area-capacity curves which can be used for operating and managing water in the reservoirs or dams efficiently.
- To apply the result of engineering survey information for increasing a storage capacity of the irrigation reservoirs or dams.

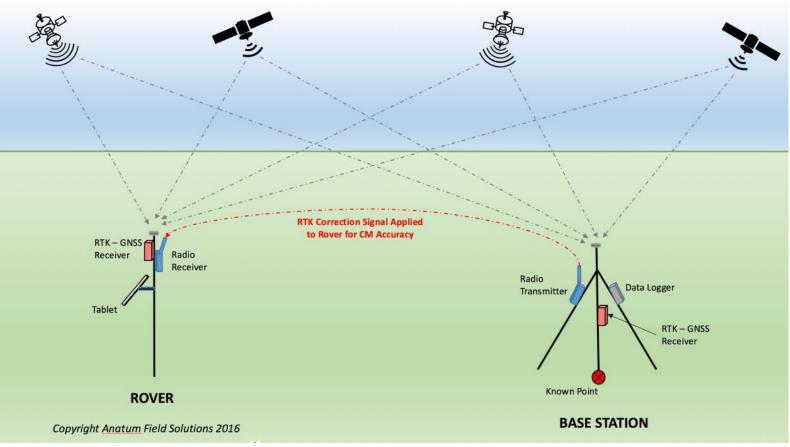
Specific Objectives

- To find out the new surveying methods or tools that can be obtained the accurate spatial data or more information for engineering works.
- To encourage staffs to learning and applying new technologies to their jobs.
- To response the policy of intelligent organization of RID by using new technology and serving a digital data for digital platform of RID.


Methodology

Surveying tools Innovation

Ground Surveying


Underwater surveying

Aerial surveying

Ground surveying -> Total Stations, Digital levels, RTK-GNSS

Underwater surveying -> Echo Sounder with RTK-GNSS

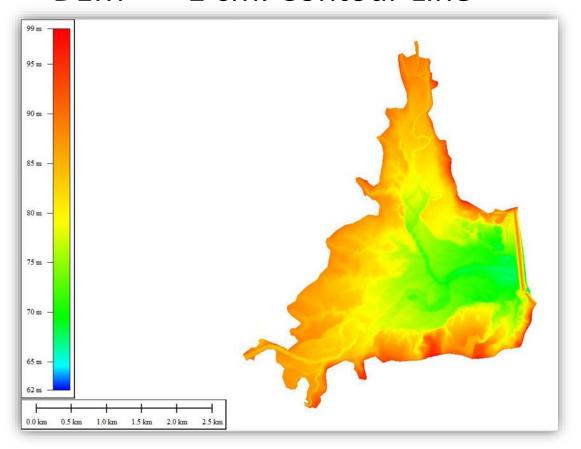
Aerial surveying -> Drone or UAV with RTK-GNSS

Methodology (Cont.)

- Field Survey working
- Data processing
 - -> Digital Elevation Model (DEM)
 - -> Contour Line
 - -> Orthophotograph products
- The area-capacity curve performing
- Reports and surveying information handling
- Results of the calibration curve applying

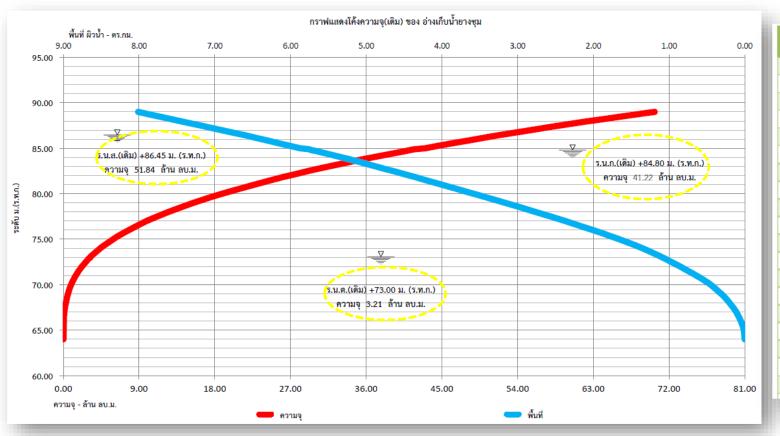
Results

Yang Chum Reservoir, Prachuap Khiri Khan

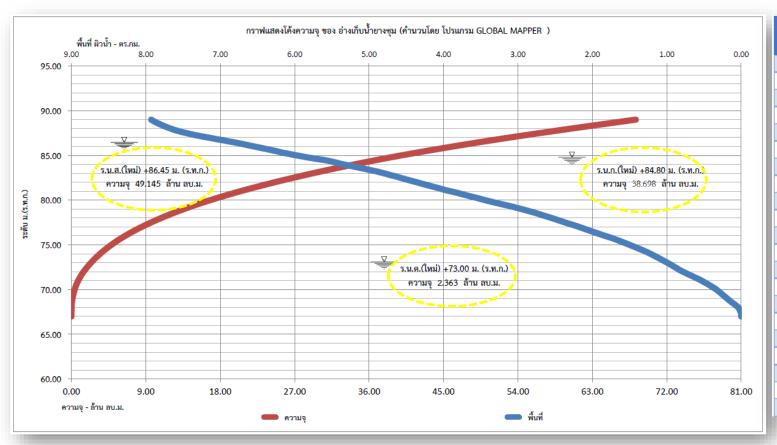


Topographical Information from the survey tools innovation Orthophoto production

DEM -> 1 cm. Contour Line

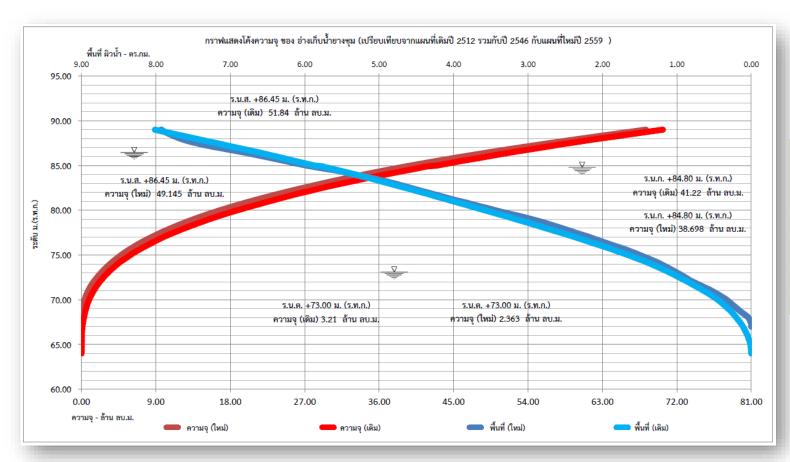


-> 1:2,000, 1:1,000, 1:500 Orthophoto Map



The area-capacity curves of Yang-Chum reservoir by using data from 1:10,000 topographic map

	ระดับ (ม. ร.ท.ก.)	พื้นที่ (คร.กม.)	ความจุ (ถ้าน ถบ.ม.)		ระดับ (ม. ร.ท.ก.)	พื้นที่ (คร.กม.)	ความจ (ถ้าน ถบ	•
	83.20	4.9594000	32.5560000		86.40	6.583200	0 51.510	0000
	83.30	5.0041000	33.0650000		86.45	6.609000		
ระดับ	พื้นที่	ความจุ	22 5740000	ระดับ	พื้	นที่	ความจุ	00
(ม. ร.ท.ก.)	(คร.กม.)	(ຄ້ານ ຄນ:	u.)	(ม. ร.ท.ก.)	(9/5.	nu.)	(ถ้าน ถบ.ม.)	00
64.00	0.0000000	0.00000	00	67.20	0.127	78000	0.1450000	DC
64.10	0.0010000	0.00300	00	67.30	0.135	9000	0.1610000	DC
64.20	0.0020000	0.00600	00	67.40	0.144	12000	0.1780000	OC
64.30	0.0030000	0.00900	00	67.50	0.153	3000	0.1940000	00
64.40	0.0041000	0.01200	00	67.60	0.162	28000	0.2100000	00
64.50	0.0052000	0.01500	00	67.70	0.172	24000	0.2270000	DO
64.60	0.0063000	0.01800	00	67.80	0.181	9000	0.2460000	DO
64.70	0.0074000	0.02000	00	67.90	0.191	2000	0.2700000	DO
64.80	0.0087000	0.02300	00	68.00	0.200	4000	0.2940000	DX
64.90	0.0104000	0.02600	00	68.10	0.210	1000	0.3180000	00
65.00	0.0123000	0.02900	00	68.20	0.220	00000	0.3420000	DO
65.10	0.0147000	0.03200	00	68.30	0.230	00000	0.3650000	DO
65.20	0.0174000	0.03500	00	68.40	0.240	2000	0.3890000	00
65.30	0.0207000	0.03800	00	68.50	0.250	7000	0.4130000	— DX
65.40	0.0244000	0.04100	00	68.60	0.261	5000	0.4370000	DO
65.50	0.0283000	0.04400	00	68.70	0.272	29000	0.4610000	DO
65.60	0.0325000	0.04600	00	68.80	0.284	16000	0.4900000	X
65.70	0.0386000	0.04800	00	68.90	0.297	74000	0.5210000	D(
65.80	0.0410000	0.05000	00	69.00	0.310	7000	0.5530000	00
	86.00	6.3798000	49.0490000		_	_	_	J
	86.10	6.4330000	49.6520000					6
	86.20	6.4839000	50.2630000					
	86.30	6.5336000	50.8860000					


The area-capacity curves of Yang-Chum reservoir by using data from Surveying Tools Innovation

ระดับ (ม. ร.ท.ก.)	พื้นที่ (ตร.กม.)	ความจุ (ล้าน ลบ.ม.)	ระดับ (ม. ร.ท.ก.)	พื้นที่ (ตร.กม.)	ความจุ (ล้าน ลบ.ม.)
67.00	0.0000	0.0000	67.30	0.0012	0.0001
67.01	0.0000	0.0000	67.31	0.0014	0.0001
67.02	0.0000	0.0000	67.32	0.0016	0.0001
67.03	0.0000	0.0000	67.33	0.0017	0.0001
67.04	0.0000	0.0000	67.34	0.0020	0.0001
67.05	0.0000	0.0000	67.35	0.0024	0.0002
67.06	0.0000	0.0000	67.36	0.0028	0.0002
67.07	0.0000	0.0000	67.37	0.0031	0.0002
67.08	0.0000	0.0000	67.38	0.0039	0.0002
67.09	0.0000	0.0000	67.39	0.0043	0.0003
67.10	0.0000	0.0000	67.40	0.0047	0.0003
67.11	0.0000	0.0000	67.41	0.0051	0.0004
67.12	0.0000	0.0000	67.42	0.0055	0.0004
67.13	0.0000	0.0000	67.43	0.0060	0.0005
67.14	0.0000	0.0000	67.44	0.0064	0.0006
67.15	0.0000	0.0000	67.45	0.0068	0.0006
67.16	0.0001	0.0000	67.46	0.0072	0.0007
67.17	0.0001	0.0000	67.47	0.0077	0.0008
67.18	0.0001	0.0000	67.48	0.0082	0.0008
67.19	0.0002	0.0000	67.49	0.0087	0.0009
67.20	0.0002	0.0000	67.50	0.0091	0.0010
	88.79	7.8860	66.5802	89.00	7.9280 68.24
	88.80	7.8880	66 6501		

Data Comparison

	Retention	Water	Water	
	Water Level	Capacity	Surface Area	
	(m. msl.)	(mcm.)	(km ²)	
Before Calibration	+84.80	41.2200	5.7250	
After Calibration	+84.80	38.6981	5.8440	
Differential	-	-2.5219	0.119	
% of Differential	-	-6.12%	2.08%	

Conclusions and suggestions

- The calibration curves by the surveying tools innovation are significantly different from the area-capacity curves by the traditional surveying information.
- The causes of the difference are
 - > Resolution of topographical information
 - > Sediment deposition in the reservoir

Conclusions and suggestions

- The calibration curve from the surveying tools innovation is highly accurate
 - > Responsible organizations should use the calibration information for the operation rule curve adjustment
- The topographical terrain underwater changes
 - Responsible organization should use the calibration curve for the future works

THANK YOU

FOR YOUR ATTENTIONS

Q&A

