Multi-objective Monitoring for the Quality Improvement of Netted Melon (*Cucumis melo* L. var. *reticulatus*) through Precise Nitrogen and Potassium Management in a Hydroponic System

Rita S.W. YAM^{1*}, Yen-Tzu FAN¹, Jing-Tian LIN²,

Chihhao FAN¹, Hsiao-Feng LO²

¹Dept. Bioenvironmental Systems Engineering, National Taiwan University, Taiwan ²Dept. Horticulture and Landscape Architecture, National Taiwan University, Taiwan

THA 2022 International Conference on

Moving Towards a Sustainable Water and Climate Change Management After COVID-19

🛗 26 – 28 January 2022 🕒 09.00 – 16.30 hrs. (GMT+7 Bangkok) 👫 Conducted in English 🛛 Online via 😋 zoom

For more information, please contact :

www.tha2022.org

Netted melon (Cucumis melo L. var. reticulatus)

Commercial fruits

- High-price, high-quality
- Not easy to grow

- Sensitive to temperature (optimal range: 25-30°C)
- 🥖 One-plant, one-melon
- Vulnerable to pests and diseases

Netted melon in Japan

King of fruits

Natural climate

High-price, high-quality (appearance, fragrance, taste)

- Beautiful appearance, musky fragrance, juiciness, full flavor, and smoothness
- 30-100 USD or more per melon (about 1.5 kg)

Harvest about **100 days**

- Outdoor: harvest once a year
- In greenhouse: 1-2 times a year

Netted melon in subtropical & tropical regions

Climate

- Natural disasters (e.g. typhoons, heavy rain events)
- Pest invasion

Cultivation in greenhouse

- Controlled environment \rightarrow high-quality
- Avoiding pests
 - Suitable temp. through year (may be harvested >2 times?)
- > \rightarrow Precision agriculture for high-quality fruits

Precision agriculture

Management in precise growing conditions

e.g. water, nutrients, fertilizers

Well controlled systems \rightarrow hazards \downarrow , yields \uparrow

Requiring accurate knowledge of plant growth in responses to various environmental factors

Hydroponic systems in agriculture

Water-based cultivation

- Faster growth of plant: direct water and nutrient absorption
- Enclosed system: effectiveness of nutrient manipulation
- Reduce diseases (no pests from soil)

Do not require soil (e.g. plant factories, green roofs)

Hydroponic systems applying in netted melon cultivation

Various fruit qualities in previous studies

Fruit weight, total soluble solids (TSS), growing days

Not consistent fruit qualities

	USA- California	Japan	Japan	Malaysia	Thailand
Melon weight (kg)	0.6-1.9	2.4	0.8-1.5	1.2	0.6-0.7
TSS (%)	9.5-10.5	14.7	10.5-16.1	13.2	12-15
cultivation periods (days)	90-150	>80	90-110	N.D.	>72
References	Rodriguez et al. 2006; Rodriguez et al. 2007	Asaduzzaman et al. 2018	lkeda et al. 1996	Lim 1985	Wiangsamut et al. 2017

N.D.: no data

To manipulate nutrient levels \rightarrow high-quality fruits

Nitrogen(N) effects on plant growth

- Energy transfer compounds
- Component of chlorophyll
 - \rightarrow Stimulate vegetative growth and root growth

Deficiency of N $\rightarrow \downarrow$ plant growth

Excessive N

- \uparrow Mineral salts \rightarrow dehydration
- \rightarrow Leaf burning and wilting or stunting root growth

Potassium (K) effects on fruit qualities

- Transport sugar to fruits
- ✓ ↑ Sucrose, glucose, fructose
 - ↑ Taste, aroma
 - ↑ Sweetness, overall preferences

↑ Fruit firmness → reduce fruit cracking

Early fruit maturation \rightarrow shorten growing periods

Goals of our tests

High variation of plants for N & K demand during different developmental stages

To determine **precise N and K fertilization** for producing high-quality melon

To **increase economic benefits** of melons

- ↑ Fruit qualities (e.g. yields, sweetness, flavor)
- ↑ Overall preferences
- \downarrow Fertilizer waste: most efficient fertilization

Aims

To investigate the optimal N and K fertilization

Through adjustment hydroponic nutrient solutions (N and K contents) during different plant developmental stages

To evaluate the effects of nutrient adjustment on:

Plant development: growth rate, stem width, and chlorophyll Fruit quality: weight, shape, sugar contents, and flesh mass Overall preferences based on blind test

MATERIALS & METHODS

Netted melon cultivation

In greenhouse

Natural light

- Transplant on 22 days after seeding
- Experimental periods: Aug-Oct, 2018
- Controlled water temp.

Hydroponic systems

Enclosed nutrient cycling

Adjusted nutrient treatments

	VG	PSF	FE	
CT	100%N 100%K	100%N 100%K	100%N 100%K	
П	75%N 75%K	75%N 125%K	100%N 100%K	
Ш	75%N 75%K	75%N 125%K	75%N 125%K	

*VG: vegetation growth; PSF: pollination and small fruits; FE: fruit enlarge

To avoid excessive fertilization To evaluate efficiency of N and K fertilization

Remote sensing applied on agriculture

Efficient fertilization

- Background knowledge for growing high-quality melons
- Real-time monitoring in every 5 minutes

- Development of **remote sensing technology**
- 2
- Linking to agricultural knowledge
- Continuous monitoring to help maintaining consistent fruit qualities by automatic sensing and nutrient adjustment

Water chemistry monitoring

Physiochemical parameters

- Water temp., pH, DO, ORP, EC
- Regular sampling of hydroponic nutrient solution

- Nutrients: NH4-N, NO3-N, PO4-P
- Essential elements: K, Ca, Mg, Na

Plant growth & fruit qualities

Growth rate, stem width, chlorophyll

Fruit maturation time

Fruit morphology

- Weight, shape, firmness
- Flesh characteristics

Thickness, total soluble solids, total salt content, ascorbic acids, nitrate, essential elements

Blind tests

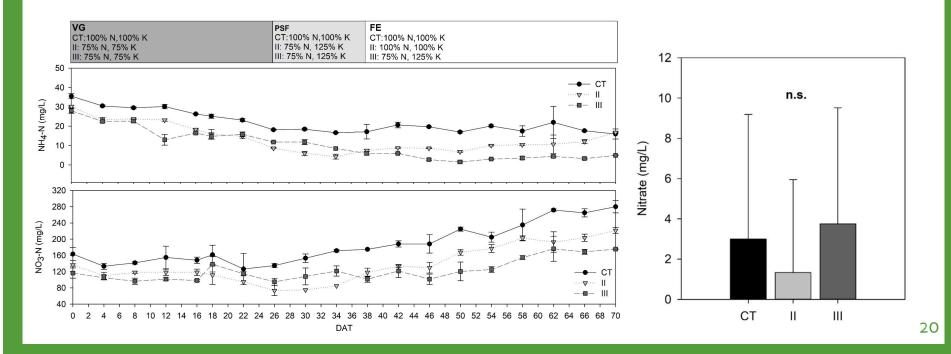
Fruit aroma

Texture

Sweetness

Overall preference

RESULTS & DISCUSSION

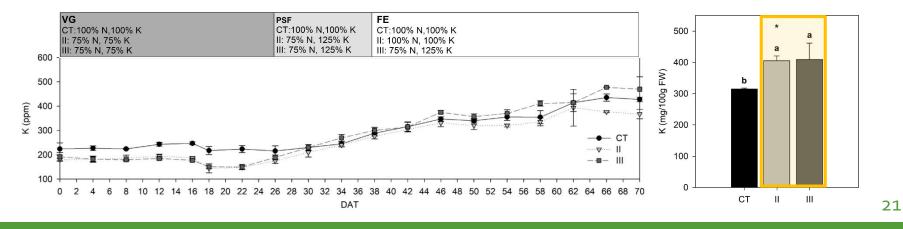


N contents in hydroponic nutrient solution and fruits

II and III: lower N concentration in water during whole planting periods

No difference of N contents in fruits among all treatments

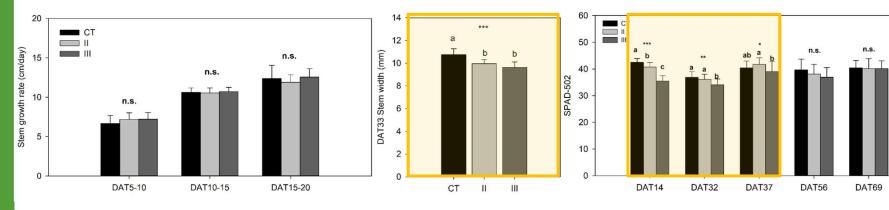
K contents in hydroponic nutrient solution and fruits



PSF: high-K in II and III

FE: II → adjusted to 100%; III → maintaining high-K

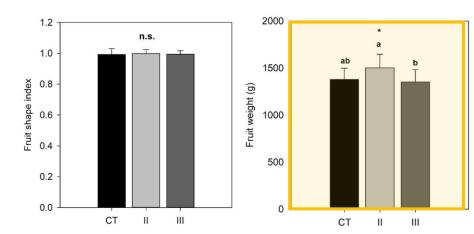
N manipulation – plant growth


No negative effects on plant growth rates

Reduced Chlorophyll during VG and PSF

	VG	PSF	FE
CT	100%N 100%K	100%N 100%K	100%N 100%K
П	75%N 75%K	75%N 125%K	100%N 100%K
Ш	75%N 75%K	75%N 125%K	75%N 125%K

22



K effects on fruit qualities – shapes and yields

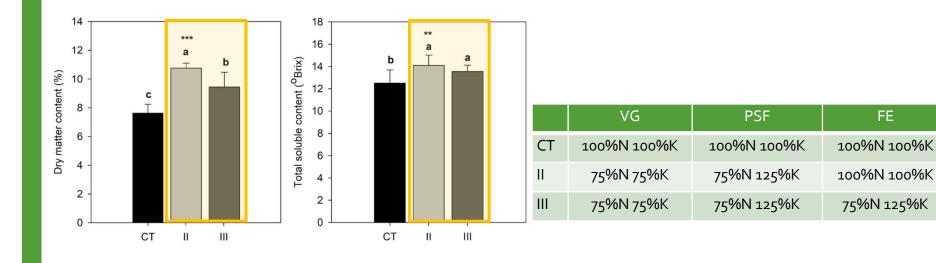
No difference in fruit shapes

But, fruit weight increased for II

	VG	PSF	FE
СТ	100%N 100%K	100%N 100%K	100%N 100%K
II	75%N 75%K	75%N 125%K	100%N 100%K
Ш	75%N 75%K	75%N 125%K	75%N 125%K

*shape index= length/width

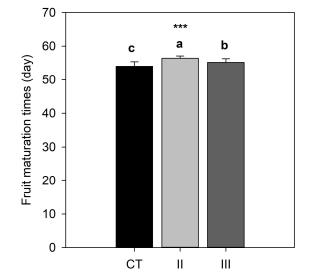
K effects on fruit qualities – flesh characteristics



↑ Fruit flesh mass

K manipulation $\rightarrow \downarrow$ water content in melon, \uparrow flesh thickness

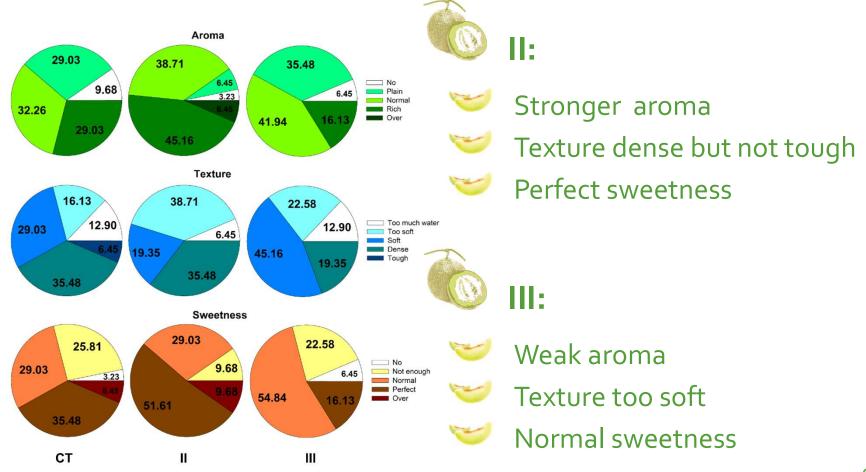
↑ Sugar content



Manipulation of N and K

No strong effects on plant growth

↑ Fruit weight (only II)

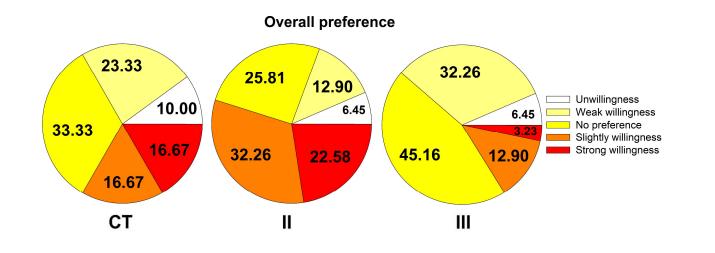

- ↑ Flesh dry mass
- ↑ Sugar contents
- No effect on fruit shapes

↑ Maturation time (CT: 54 days; II:56.5 days; III: 55.2 days)

N and K manipulation for treatment II & III 1 fruit qualities, but need more days for maturation

Blind test results – aroma and taste

Blind test results – overall preference


II: ↑ ; III: ↓

N and K adjustment:

VG PSF FE CT 100%N 100%K 100%N 100%K 100%N 100%K II 75%N 75%K 75%N 125%K 100%N 100%K III 75%N 75%K 75%N 125%K 75%N 125%K

Excessive K with low-N at FE -> reduce overall preference

Comparison with Earl's melons (Cucumis melo L.) in Japan

In Taiwan: growing faster (~ 5 days)

Fruit weight & TSS

II → Mountain class (grade 2 in Japan)

Japan (temperature region)				This study (subtropical & tropical region)			
	Fuji (0.1%)	Mountain class (25%)	White class (55%)	Normal	СТ	Ш	ш
Melon weight (kg)	N.D.	1.5	1.5	1.5-1.6	1.38±0.12	1.54 ± 0.14	1.37 ± 0.13
TSS (%)	N.D.	>15	13-14	N.D.	12.5±1.18	14.1±0.93	13.5±0.56
Blossom (days after seeding)	~50	~50	~50	N.D.	44-45	44-45	44-45
cultivation periods (days)	~100	~100	~100	N.D.	94-95	94-95	94-95
Price (USD)	>200	~60	~45	20-30			
N.D.: no data							28

Conclusion

Manipulation of N and K fertilizations

Enhancing fruit qualities (e.g. weights, sweetness) Enhancing overall preferences (II)

But, excessive K with low-N during FE

Reduce overall preferences (III)

Equivalent to mountain class in Japan

Success in producing high-quality melons

High market price

Agronomy **2020**, 10,816; doi:10.3390/agronomy10060816 29

ECOLOGY & CONSERVATION LABORATORY

National Taiwan University

Thank you very much Questions are welcomed

Rita S.W. Yam: ritayam@ntu.edu.tw

Acknowledgements: National Taiwan University Core Consortiums, project numbers: 106R891006, 107L892605, 109L891309; Horticulture Section, Agricultural Experimental Farm from the College of Bio-resources & Agriculture of National Taiwan University