Real-time Reservoir Optimization for Long-term Operation Considering Seasonal Ensemble Precipitation Forecast: A case study of the Sirikit Dam in 2019

Thatkiat Meema^{1,2*}, Suppatana Wichakul¹ and Yasuto Tachikawa²

¹TEAM Consulting Engineering and Management Public Company Limited, Bangkok, Thailand ²Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, Japan *E-mail: thatkiat.meema@gmail.com*

Jan 27 2022

Background of study

- <u>The uncertainty</u> regarding the basin's hydrological condition in a tropical climate have a primary effect on reservoir operation, increasing the risk of water shortages.
- Incorporating weather forecast data may improve the efficiency of decision making.
- For more robustness in reservoir operation using Dynamic Programming (DP), seasonal forecast may be considered (Meema et al., 2021).

Meema, T., Tachikawa, Y., Ichikawa, Y., Yorozu, K., 2021. Real-time optimization of a large-scale reservoir operation in Thailand using adaptive inflow prediction with medium-range ensemble precipitation forecasts. J. Hydrol. Reg. Stud. 38, 100939. 10.1016/j.ejrh.2021.100939.

A case study; Sirikit Dam

The Sirikit Reservoir situation in 2019

Operation record in 2019 compared with 30-year historical data

Real-time reservoir optimization flowchart

 This study aim to introduce forecast information (medium-range and seasonal) to the real-time reservoir operation for determining release policy 1 week in advance.

Real-time optimization flowchart

Ensemble Precipitation Forecast data (EPF)

• Medium-range precipitation forecast

ECMWF (European Centre for Medium-Range Weather Forecasts)

- **51** members
- Approximately **0.5** degree resolution
- Forecast of 15 days
- 6 hours of temporal resolution

Forecast time 2020-09-16 00UTC

Medium-Range Precipitation Forecast, mean of ensemble Lead time 6 hour

Ensemble Precipitation Forecast data (EPF)

Seasonal precipitation forecast

ECMWF seasonal forecast

- 51 members
- Approximately **1.0** degree resolution
- Forecast of 215 days (7 months)
- 24 hours of temporal resolution
- Released every month

Source : apps.ecmwf.int

Prediction model

Improved 1K-DHM (Meema and Tachikawa, Calibrated parameters 2020) was applied for this study.

Parameter	
(Units)	Value
<i>n_s</i> (m-1/3/s)	0.975
k_a (m/s)	0.000114
d_a (m)	3.179
d_m (m)	2.984
Beta (-)	19.906
<i>k_u</i> (m/s)	8.460E-05
<i>d</i> _µ (m)	0.323
k_v (m/s)	1.084E-07

Model performances

Period	Calibration	Validation 1	Validation 2
NSE	0.89	0.82	0.84
RMSE (mcm)	35.0	63.6	33.9
PBIAS (%)	-3.7	-13.3	-6.6

The model performs well in both calibration and validation periods.

Real-time state update of hydrological model

 We adopted empirical data assimilation procedure (Collischonn et al., 2005) to incorporate with the distributed hydrologic model to determine the initial state of the basin (at t0).

The **updating correction factor** (*FCA*) is calculated at the gauge station **k** using the equation as follow;

$$FCA_k = \frac{Q_{obs,k}}{Q_{cal,k}}$$

where $Q_{obs, k}$ and $Q_{cal, k}$ are observed and calculated river discharge at gauge station k.

Upstream grids state update

Stages update

$$S_{up,i,k} = FCA_k \cdot S_{cal,i} \cdot \left(\frac{A_i}{A_k}\right) + S_{cal,i} \cdot \left(1 - \frac{A_i}{A_k}\right)$$

where $S_{up, i, k}$ is the updated model state variables at cell *i* located upstream of gauge station *k* in which it is <u>river discharge</u> (*Q*), <u>lateral</u> <u>discharge</u> from the surface soil layer (*q*_s) and the bedrock aquifer layer (*q*_u) of the hydrologic model for this study, *A*_i and *A*_k are the drainage areas upstream of cell *i* and gauging station *k*.

State update conceptual drawing in a distributed model

Reservoir inflow forecast using Medium-Range EPF (weekly update)

The medium-range forecast is updated weekly

Results of seasonal ensemble inflow forecast

For different initial forecast time (update once a month)

Real-time optimization scheme

- To adopt **DP**, the *penalties* ($F_{(\cdot)}$) must be accounted into the lower storage levels. <u>This to ensure that the</u> reservoir will not draw down to low storage levels (by releasing excess water to generate benefits).
- The *dummy year* was proposed to make the penalties at the end of 2020 ($F_{(T'+1)}$) independent of the assumption that the operation will end somewhere.

Real-time optimization inflow scenarios

<u>Real-time optimization inflow scenarios</u> with different inflow assumptions for penalty calculation.

		Periods					
Scenarios		Optimization –	Storage penalty determination				
			Seasonal forecast	until the end of 2020	Dummy year		
Scenario	0	baseline scenario (actual operation)					
Scenario 1		pe	rfect forecast (obs. inflow	/)	Hist. med. Inflow		
Scenario	Scenario 2 Hist. med. Inflow		d. Inflow				
Scenario 3	3.1		Seasonal fore. p75				
	3.2	Medium-range fore. mean	Seasonal fore. p50	Hist. med	Hist. med. Inflow		
	3.3		Seasonal fore. p25				

Objective function

For this study, *drought damage function* was considered which is the function of the reservoir release and water demand.

The objective function for this problem can be expressed as

T is the number of optimization stage H_t is the total damage at stage t

Drought damage function (Ikebuchi et al., 1990)

$$H_t(R_t) = \frac{[max(D_t - R_t, 0)]^2}{D_t}$$

where R_t and D_t are reservoir release and downstream demand at stage t respectively

For water demand (D_t) in this study, we assumed that the actual release during 2019 could supply the downstream demand.

Scheme output and implementation

Output release strategy

Current	Release			
Storage	strategy			
(<i>S</i> _t)	(R_t)			
7803.6	214.1			
7732.5	167.6			
7661.4	161.1			
7590.3	157.9			
7519.2	158.0			
7448.1	154.8			
7377.0	155.0			
7305.9	151.8			
7234.8	148.6			
7163.7	145.4			
7092.6	145.6			
7021.5	142.4			
6950.4	139.2			
6879.3	132.7			
6808.2	112.8			
6737.1	86.3			
6666.0	43.2			

Release (\mathbf{R}_t)

- The one-week advanced release strategy (*R_t*) obtained from the optimization scheme can be implemented for any initial reservoir storage level (*S_t*) at the target time (*t*).
- This strategy can be implemented under different flow patterns using linear interpolation among the release tables.

Result (reservoir simulation using 1 week in advance release policy)

Although more releases provided lower damage, the remaining <u>water</u> <u>budget</u> for the future operation is different.

		Total value as	End year storage [million m ³] End year storage penalties* [million m ³]	Acc. drought damage [million m ³]		Hydropower production [GWh]		
	Scenarios	[million m ³]		penalties* [million m ³]	within 2019	including penalties*	within 2019	including future potential**
Actual operation	Scenario 0	6175.9	4851.0	624.6	0.0	624.6	1023.4	2618.4
Perfect forecast	Scenario 1	5294.3	5715.5	218.0	132.0	350.0	908.6	2661.7
Historical information	Scenario 2	5791.7	5228.5	399.9	37.8	437.7	972.0	2634.9
Forecast information -	3.1	6229.2	4819.3	647.0	901.7	1548.7	1011.2	2606.8
	Scenario 3 3.2	5984.9	5043.6	500.0	88.0	588.0	989.7	2622.0
	3.3	5511.7	5504.3	285.4	104.7	390.1	936.4	2646.0

Considering **p25 of long fore.** during <u>drought condition</u> resulted in a similar tendency with **Perf. fore.**

* possible min. drought damage at the end year storage level based on actual inflow in 2020 and Hist. p50 in dummy year

** potential of power generation at the end year storage level based on actual inflow in 2020 and Hist. p50 in dummy year

Conclusions

- Even though the seasonal forecast has high uncertainty,
- there are *advantages* in the use of seasonal EPF for long-term reservoir operation when appropriately considering the probability of results among the forecast members compared to without taking predictions into account.
- An accurately **long-term forecast is required** for <u>more robustness</u> in reservoir operation.
- For more robustness, **real-time actual d/s water demand** may need to consider.
- The evaluation of the real-time scheme should be **followed up** with the further years.