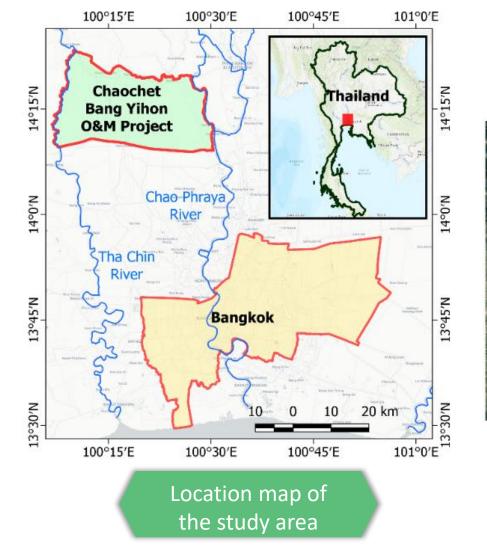
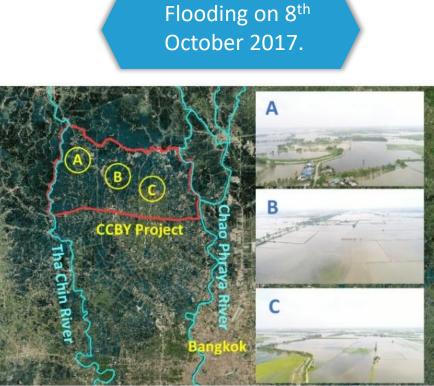


Reducing Irrigation water requirements of the Chao Chet - Bang Yihon Operation and Maintenance Project by Defining New Cropping Calendar based on Time Series NDVI.

Manatchanok Pannak^{1,2}, Thundorn Okwala¹, Chuphan Chompuchan¹

¹Department of Irrigation Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Thailand ²Bureau of Project Management, Royal Irrigation Department, Thailand


Study Area


Chao Chet - Bang Yihon operation and maintenance project (CCBY)

is controlled by Regional Irrigation Office 11 (RIO.11)

The total irrigated area of the CCBY project is **65,000 ha.**

80% of the area is rice paddy fields

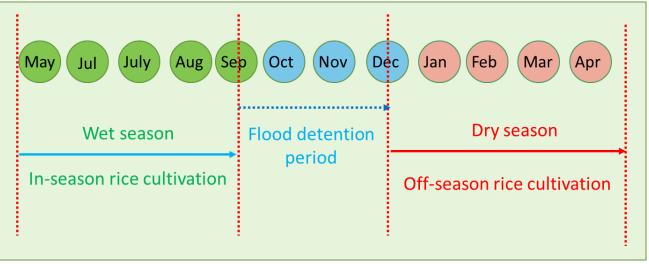
(A) Bang Pla Ma District, Suphan Buri Province(B) Sena District, Ayutthaya Province(C) Bang Sai District, Ayutthaya Province

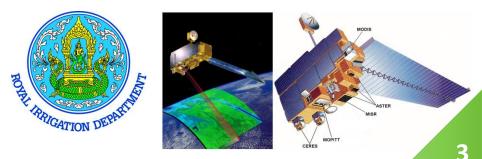
Research Background

Royal Irrigation Department (RID) has an irrigation water allocation

plan according to the cropping calendar

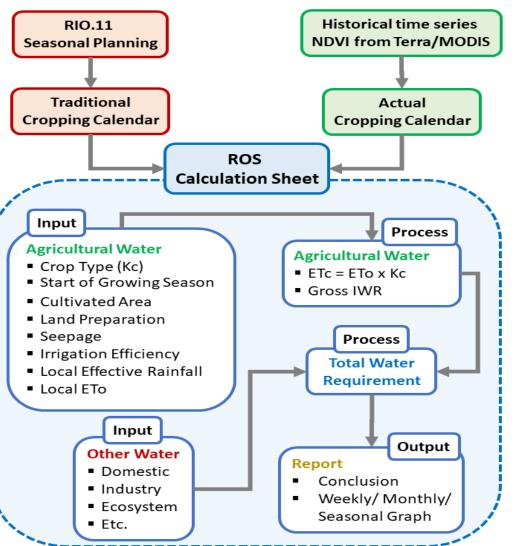
Wet Season: May – October Dry Season: November - April


Chao Chet - Bang Yihon operation and maintenance project (CCBY)


The cropping calendar was required to shift the in-season rice cultivation ahead of schedule in May and complete harvesting before mid-September

OBJECTIVE:

To compare water demand in the CCBY using the traditional RID's cropping calendar and the actual rice cropping pattern derived from the time series NDVI of the Terra/MODIS satellite.


Cropping calendar in Flood season

Methodology

Normalized Difference Vegetation Index (NDVI) data

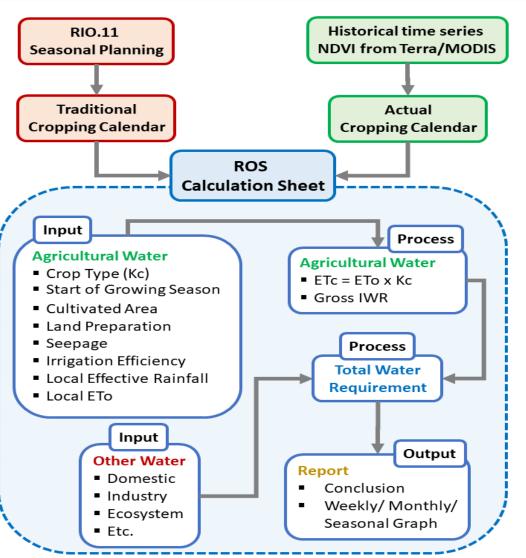
Terra/MODIS 8-day composite products (MOD09Q1) at 500m resolution

Band 1 (red band, 620-670 nm)

 $NDVI = \frac{\rho NIR - \rho RED}{\rho NIR + \rho RED}$

Band 2 (near-infrared band, 841-876 nm)

 ρ NIR = surface reflectance of near-infrared (NIR) ρ RED = surface reflectance of visible red (RED)


The range of NDVI values between -1 to1

NDVI Values	Identify	
High (0.6-0.8)	a dense green vegetation canopy	
Low (near Zero)	bare area or urban area	
Negative	water and cloud	

Research framework

Methodology

Research framework

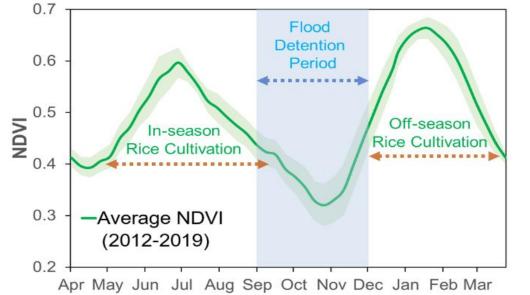
Reservoir Operation Study (ROS)

is a Microsoft Excel sheet to calculate irrigation water requirements.

$W_g = \frac{W_n}{E_i}$	Year	In-season rice (ha)	Off-season rice (ha)
$W_n = ET_c - R_e$	2017	56,000	53,083
	2018	53,216	39,859

W_g = Gross irrigation water requirements W_n = Net water application

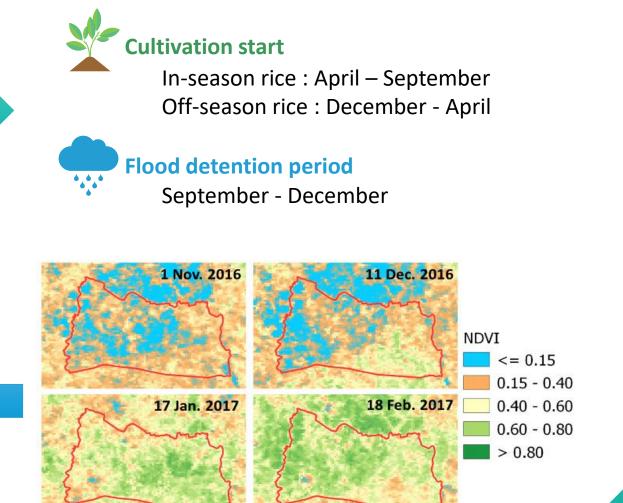
- E_i = irrigation efficiency of 45%
- Seepage of 7 mm week⁻¹


 $ET_c = K_c \times ET_o$

- Land preparation of 240 mm week⁻¹
- ET_o using the Penman-Monteith method
- K_c values were obtained from RID's crop coefficient database
- Re, effective rainfall using the weighted rainfall method from RID

Results

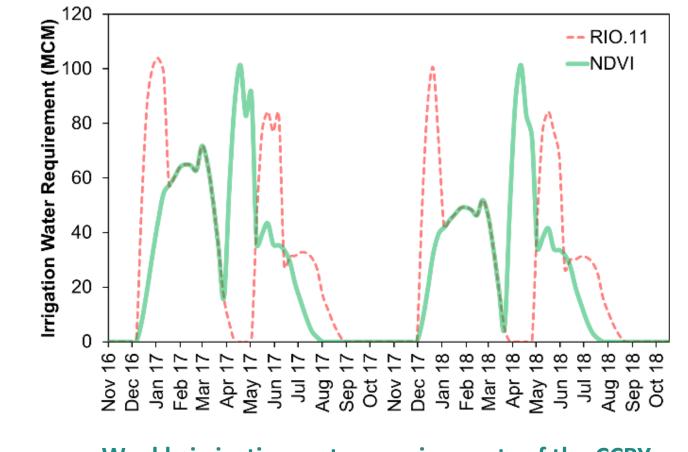
Average NDVI obtained from Terra/MODIS satellite during 2012-2019.


NDVI Map

1st November and 11th December 2016 : Flood 17th January and 18th February 2017: Cultivation

NDVI Value

Eastern area > Western area


the flooding on the eastern area could be drained before the western area.

NDVI maps of the CCBY during the dry season of 2016/17.

Flood detention period: NDVI > RIO.11

Off- season rice:

 $\mathsf{NDVI} < \mathsf{RIO.11}$

In- season rice cultivation on: RIO.11: 9 - 15 May Historical NDVI: 4 – 10 April

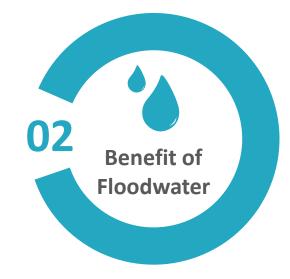
Therefore, the policy of shifting the cropping calendar in 2017-18 **is not well-matched** with an identical pattern according to the historical NDVI.

Results

Year	Season	Gross IWR (MCM)		
Tear		RIO.11	NDVI	
2017	Off-season rice	1,060.56	777.45	
	In-season rice	619.18	717.19	
	Total	1,679.69	1,494.64	
	Difference	185.05 (11.01%)		
2018	Off-season rice	792.50	579.92	
	In-season rice	589.66	684.26	
	Total	1,382.16	1,264.18	
	Difference	117.98 (8.54%)		

Rainy season in central Thailand starts around mid-May

Therefore, starting rice cultivation in April may require more irrigation water due to less effective rainfall.

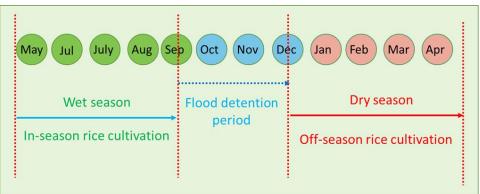

The gross IWR for off-season rice cultivation decreased because farmers could take advantage of the remaining floodwater for land preparation water

Discussion

01 Adaption method

The shifted rice cropping pattern derived from the time series NDVI indicated that farmers had an autonomous adaptation to flooding before the Ministry of Agriculture and Cooperative policy was promulgated.

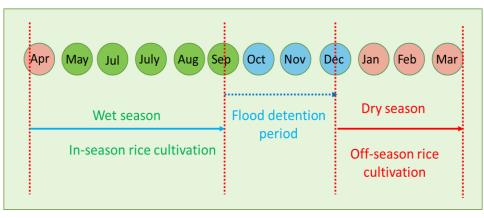
Floodwater during the benefit period is valuable for preparing the land to cultivate rice . Thus, land preparation water should not be taken into account in the gross IWR calculation after the flood detention period



Changing the cropping calendar is suggested to **photo-insensitive rice varieties only** due to the constant crop duration and not affecting irrigation water requirements.

Conclusion

<u>Old</u> cropping calendar



Cropping calendar: Start date of growing rice

Wet season: 4 -10 April

Dry season: 13 – 19 December

New cropping calendar

Irrigation Water : **SAVE**

Thank You