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What is seasonal prediction?

Seasonal prediction

is to provide useful information about the “climate” that can be expected in the coming months/seasons.
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What is difference between weather prediction and seasonal prediction?

A snapshot of atmospheric A statistical summary of the weather
Target conditions events occurring
in a given season.

Tomorrows daily maximum

temperature June-July-August averaged ftemperature

Example

up to approximately 10 days
because of a chaotic system__

Lead Time

a few seasons ahead

Q. Why is seasonal prediction possible
despite the chaotic nature of the atmosphere?

Potential Atmospheric boundary conditions
source of Atmospheric initial conditions (e.g. SST, sea-ice concentration, soil
predictability moisture, stratosphere, etc)




Prediction of the Indian Ocean Dipole Mode (IOD) is
crucial for seasonal prediction over
the Indian Ocean rim countries, Europe, and East Asia (including Japan)

(Saji et al. 1999; Yamaqgata et al, 2004)
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The pIOD occurrence was predicted a few seasons ahead by overcoming the so-called
winter predictability barrier, which is related to the success in predicting the El Nino
Modoki and its atmospheric connection (Doi et al. 2020a, GRL)

Doi, T., Behera, S. K., & Yamagata, T. (2020). Predictability of the super 10D event in 2019 and its link with El Nino Modoki.
Geophysical Research Letters, 47, e2019GL086713. https://doi.org/10.1029/2019GL0O086/13
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experienced extremely warm conditions during the 2019-2020 winter.

2019 Dec.-2020Jan. average

2m air temperature anomaly (°C)
a) Reanalysis

SON

\41

.

2
: ”
”

S \ ﬂ --- % _sTime series of Dec.-Jan. average of 2m air temperature (°C)
iﬁ ¢ . (@) Western Japan (130°E-140°E, 30°N-40°N)

100E  120f §.5-

6 -
1985 1990 1995 2000 2005 2010 2015 2020



2019 Dec.-2020Jan. average

2m air temperature anomaly (°C)
nalysis

80E 100E 120E

-2 -1.5 -1 -0.5

80E 100E 120E

EQ
10S
20S
30S

40S
20E 40E 60E 80E 100E 120E

— | 1
1 1.5 2 2.5

140E 160E 180 160W  140W  120W

0.5 1 1.5 2 2.5

(108-ensemble mean)

)

140E 160E 180 160W 140w 120W

2.5

140E 160E 180 160W 140W 120W




2019 Dec.-2020Jan. average

2m air temperature anomaly (°C)

GH200 anomaly (m, shaded) and WAF200 (m?/s?, vector)
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Co-variability of ensemble members may suggest a possible teleconnection
from the western tropical Indian Ocean to Japan
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Co-variability of ensemble members may suggest a possible teleconnection

from the western tropical Indian Ocean to Japan

Scatter plot of ensemble members
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northward meandering over northwest Japan.
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masses from the high latitude to Japan was weakened
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Ocean, confirming the link with the super |10

D of 2019.



Summary

In this study, we have explored the potential source of the unusually warm
2019-2020 winter in East Asia by analyzing the co-variability of inter-member
anomalies in the 108-members ensemble of the SINTEX-F prediction system.

We have found a possible teleconnection pattern related to the meander of the
subtropical jet, which was excited by the atmospheric processes due to the
abnormally warm SST in the western Indian Ocean.

The anomalous SST is due to the long-lasting super IOD in 2019.
For the present purpose, the ensemble prediction system with 108-members has

an advantage in finding possible teleconnection patterns influencing the mid-latitude
climate with the large stochastic internal variability.
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Application Ex. 1
An eco-physiological process-based crop model "PRYSBI2” (developed by NARO)
with SINTEX-F2 to predict worldwide yields for four major crops

PRYSBI2 (Sakurai et al. 2014) Anomaly correlation scores for a 3-months lead prediction of year-to-

year variations in yields
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The daily outputs from the SINTEX-F2 seasonal prediction system
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were used as the inputs to the crop model

Doi, T., G. Sakurai, and T. lizumi. 2020. Seasonal Predictability of Four Major Crop Yields Worldwide by a Hybrid System of
Dynamical Climate Prediction and Eco-Physiological Crop-Growth Simulation. Frontiers in Sustainable Food Systems. 4: https://

doi.org/10.3389/fsufs.2020.00084



Application Ex. 2

Malaria predictions in South Africa based on our seasonal climate forecasts: A time series distributed lag nonlinear model

(A)

¢ Observations * Predictions

4000

Cumulative annual number of malaria incidence for the 2-weeks-
ahead lead time (red, predictions; black, observations) ®
based on SINTEX-F seasonal climate forecasts.
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Kim, Y., and Coauthors (2019), Malaria predictions based on seasonal climate forecasts in South Africa: A time series
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