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SINTEX-F seasonal prediction system and its application 
A brief review of my recent activities  
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Target
A snapshot of atmospheric 
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Example
Tomorrow’s daily maximum 

temperature June-July-August averaged temperature 

Lead time
up to approximately 10 days 
because of a chaotic system a few seasons ahead

Q. Why is seasonal prediction possible  
despite the chaotic nature of the atmosphere?

Potential 
source of 

predictability
Atmospheric initial conditions

Atmospheric boundary conditions 
(e.g. SST, sea-ice concentration, soil 

moisture, stratosphere, etc)



(Saji et al. 1999; Yamagata et al. 2004)

Prediction of the Indian Ocean Dipole Mode (IOD) is 
 crucial for seasonal prediction over  

the Indian Ocean rim countries, Europe, and East Asia (including Japan)
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(Figure 1a). This paper examines in detail why this strong phenomenon was predicted several seasons ahead
by analyzing prediction plumes based on Scale Interaction Experiment‐Frontier (SINTEX‐F)
(Doi et al., 2016, 2017; Luo et al., 2005).

Not a few studies already assessed seasonal predictability of the IOD by dynamical and statistical prediction
systems (Doi et al., 2019; Feng et al., 2014; Luo et al., 2007, 2008; Wajsowicz, 2005; Zhao et al., 2019). Some
studies indicate that positive IOD events that co‐occur with the canonical El Niño events in the Pacific can be
predicted relatively well (Song et al., 2008; Yang et al., 2015; Zhao & Hendon, 2009). The subsurface oceanic
condition in the tropical Indian Ocean is also known to provide the necessary conditions for the IOD devel-
opment (Cai et al., 2009; Doi et al., 2017; Horii et al., 2008; Rao et al., 2002). In non‐El Niño years, cooling of
the eastern tropical Indian Ocean by anomalous monsoon‐like winds and the associated ocean currents may
contribute to development (Lee Drbohlav et al., 2007). While these precursors explain some of the IOD
events, predicting IOD event is still challenging. Above all, how to overcome the so‐called “winter predict-
ability barrier” is still a problem (Feng et al., 2017; Mu et al., 2017; Wajsowicz, 2005). However, the 2019
event was successfully predicted using the SINTEX‐F system over the winter predictability barrier; it is of
interest to study why the barrier was overcome. To find possible precursors and teleconnection patterns
related to the 2019 IOD event, we study the covariability of intermember anomalies defined as deviations
from the mean in the ensemble reforecasts.

Figure 1. (a) Monthly DMI from the observational data of NOAA OISSTv2 from 1982 to the present. DMI is first introduced by Saji et al. (1999) as the SST
anomaly difference between the western pole off East Africa (50–70°E, 10°S to 10°N) and the eastern pole off Sumatra (90–110°E, 10°S to equator).
(b) Monthly DMI from October 2018 to September 2019 (°C) from the observational data of NOAA OISSTv2 (black) and the prediction issued on 1 November 2018
with the 9‐ensemble by the F1 (thin orange, each ensemble member; thick red, ensemble mean), the 12‐ensemble by the F2 (thin right green, each ensemble
member; thick green, ensemble mean), the 12‐ensemble by the F2‐3DVAR (thin right blue, each ensemble member; thick blue, ensemble mean), and the all
ensemble mean (thick purple). (c) Same as (b) but for the 1 May 2019, initialization.
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The pIOD occurrence was predicted a few seasons ahead by overcoming the so-called 
winter predictability barrier, which is related to the success in predicting the El Niño 
Modoki and its atmospheric connection (Doi et al. 2020a, GRL)
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Figure S5. (a, b) Same as Fig. 1a, b, but for EMI. (c) Same as (b), but for 1993.  

Doi, T., Behera, S. K., & Yamagata, T. (2020). Predictability of the super IOD event in 2019 and its link with El Niño Modoki. 
Geophysical Research Letters, 47, e2019GL086713. https://doi.org/10.1029/2019GL086713 
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Figure S1.  (a) Time series of December–January average of 2m air temperature in the 
western Japan (130ºE–140ºE, 30ºN–40ºN) from the NCEP/NCAR reanalysis data. The 
2019 December–2020 January average is the warmest in the 1983–present. (b) Same as 
(a), but for the western tropical Indian Ocean (WIO: 40ºE–60ºE, 10ºS–10ºN). (c) Same as 
(a), but for the tropical Pacific west of 170° E to the dateline (WWP: 160ºE-180ºE, 10ºS-
10ºN). (d) The Arctic Oscillation (AO) index from 
https://www.ncdc.noaa.gov/teleconnections/ao/ 
, which is obtained by projecting the first mode of EOF analysis using monthly mean 
1000 millibar height anomaly data from 1979 to 2000 over 20°N-90°N.  
  







2019/20 wintertime in East Asia was successfully predicted.  
Why?
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A zonal dipole is also seen in the correlation maps for the 
temperature and the OLR anomalies in the tropical Indian 
Ocean, confirming the link with the super IOD of 2019. 
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In this study, we have explored the potential source of the unusually warm 
2019-2020 winter in East Asia by analyzing the co-variability of inter-member 
anomalies in the 108-members ensemble of the SINTEX-F prediction system.  

We have found a possible teleconnection pattern related to the meander of the 
subtropical jet, which was excited by the atmospheric processes due to the 
abnormally warm SST in the western Indian Ocean.  

The anomalous SST is due to the long-lasting super IOD in 2019.  

For the present purpose, the ensemble prediction system with 108-members has 
an advantage in finding possible teleconnection patterns influencing the mid-latitude 
climate with the large stochastic internal variability.

Summary

Doi, T., Behera, S. K., & Yamagata, T. (2020). Wintertime impacts of the 2019 super 
IOD on East Asia. Geophysical Research Letters, 47, e2020GL089456.



An eco-physiological process-based crop model “PRYSBI2” (developed by NARO)  
with SINTEX-F2 to predict worldwide yields for four major crops 

PRYSBI2（Sakurai et al. 2014） Anomaly correlation scores for a 3-months lead prediction of year-to-
year variations in yields
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 The daily outputs from the SINTEX-F2 seasonal prediction system  
were used as the inputs to the crop model

Doi, T., G. Sakurai, and T. Iizumi. 2020. Seasonal Predictability of Four Major Crop Yields Worldwide by a Hybrid System of 
Dynamical Climate Prediction and Eco-Physiological Crop-Growth Simulation. Frontiers in Sustainable Food Systems. 4: https://
doi.org/10.3389/fsufs.2020.00084

Application Ex. 1



Application Ex. 2

 

Cumulative annual number of malaria incidence for the 2-weeks-
ahead lead time (red, predictions; black, observations)  
based on SINTEX-F seasonal climate forecasts.

Malaria predictions in South Africa based on our seasonal climate forecasts: A time series distributed lag nonlinear model

Kim, Y., and Coauthors (2019), Malaria predictions based on seasonal climate forecasts in South Africa: A time series 
distributed lag nonlinear model, Scientific Reports, Article No. 17882 


