PREDICTING THE RESERVOIR INFLOW OF BHUMIBOL DAM USING XGBOOST MACHINE LEARNING ALGORITHM

PHEERANAT DORNPUNYA

THA 2022 INTERNATIONAL CONFERENCE ON MOVING TOWARDS SUSTAINABLE WATER AND CLIMATE CHANGE MANAGEMENT AFTER COVID-19

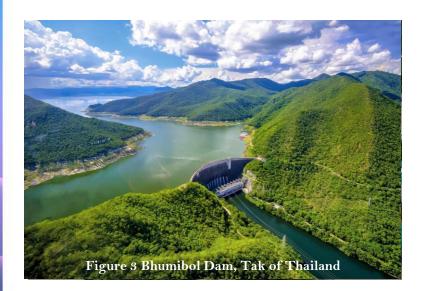
26-28 JANUARY 2022

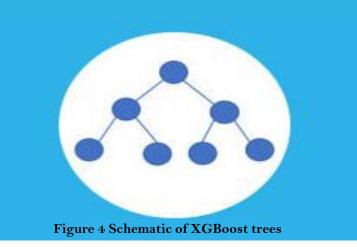
ADVISOR: ASSOC. PROF. DR. AREEYA RITTIMA

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING, FACULTY OF ENGINEERING

MAHIDOL UNIVERSITY

Statement of the problems and objectives

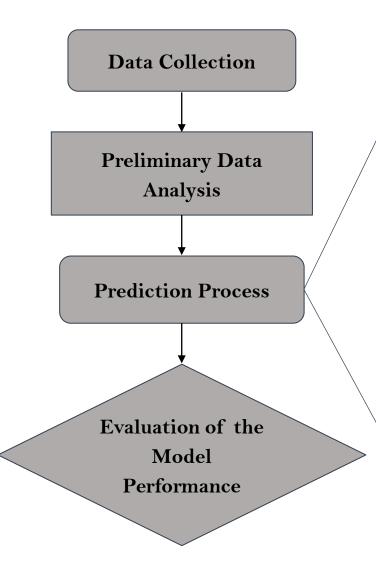


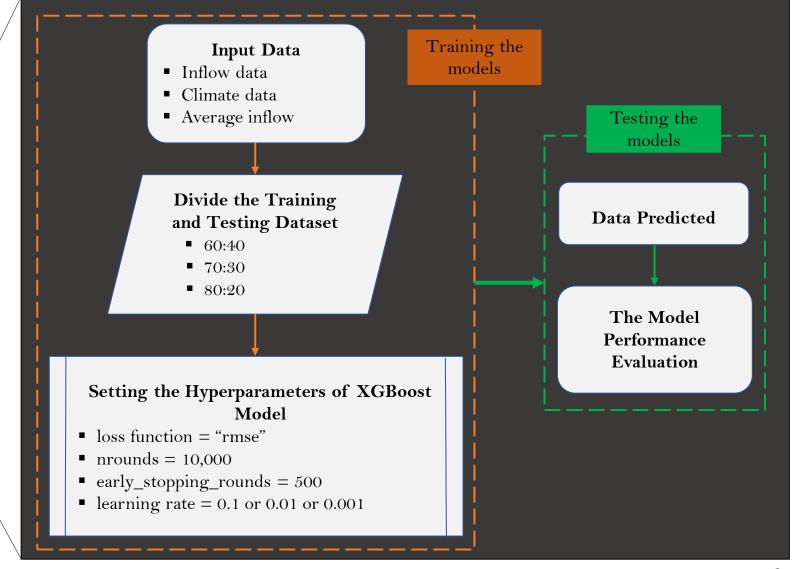


- Thailand faces hydrological problems every year that affect agricultural, community, and industrial areas, especially in the central and northern regions. It also affects the water management of major dams in the country, such as the Bhumibol Dam.
- This has significant implications for the operational actors to revise the strategic plan based upon the data-driven decision-support tools to reduce disaster risks and losses. The accurate and reliable hydrological prediction plays vital role in the decision-making process specifically for real time operation of dam-reservoir system. Machine Learning (ML) which is the advanced area of Artificial Intelligence (AI), has been extensively used to improve predictive accuracy and understand hydrological uncertainty and provide the multiple lead times. It has proved a great success in predicting hydrological data such as rainfall, reservoir inflow, and river flow, etc.
- Therefore, to solve the problems, this research aims to develop the prediction models of the reservoir inflow of the Bhumibol Dam using XGBoost algorithm, which is a Machine Learning (ML) technique, and compare the performance of daily and monthly prediction models.

👤 🍐 🕘 🕘 🙆 🙆 🧭 🗱 THA 2022 International Conference on Moving Towards a Sustainable Water and Climate Change Management After COVID-19, 26-28 January 2022, Online platform

Methodology





Data Collection

Note; ^{1/}EGAT = Electricity Generating Authority of Thailand

> ^{2/}TMD = Thai Meteorological Department

^{3/}https://power.larc.nasa.gov/ data-access-viewer/ Table 1 Data collection for this study

Data Category	Source
Reservoir Data	
Reservoir inflow data	EGAT ^{1/}
Hydrological and Climate Data	
Climate & Rainfall data	TMD ²⁷ /Web-Based Data Sources ^{3/}

Table 2 The climate station sites nearby the Bhumibol Dam

Code	Weather	Geography Coordinate			
	Observing Station Name	Latitude	Longitude		
0002	Tak	16.880000	99.140000		
0006	Bhumibol Dam	17.243611	99.002222		
0007	Mea Sot	16.700000	98.541944		
0015	Si Samrong	17.486389	99.526667		
0017	Doi Musir	16.700000	98.935278		
0019	Thoen	17.636667	99.245556		

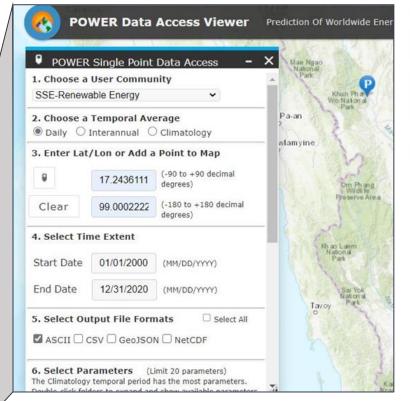


Figure 5 Web base data source of climate data by NASA

The climate data was obtained from the National Aeronautics and Space Administration (NASA) and was based on the same geographic coordinates as TMD climate stations located around the reservoir site.

Data Collection

Preliminary Data Analysis

Note;

^{1/}AH = Average Air Humidity (%)
^{2/}AP = Average Air Pressure (hPa)
^{3/}AT = Average Temperature (°C)

^{4/}Prec. = Precipitation (mm/day).

Basic Statistic Analysis

The Bhumibol Dam has the reservoir capacity of 9,662 MCM covering drainage area of 26,386 km². The basic statistics of climate data and reservoir inflow of the Bhumibol Dam collected from 2000–2020 (21 years) are summarized in Table 3.

Table 3 Descriptive statistics of climateand reservoir inflow data in the studyarea

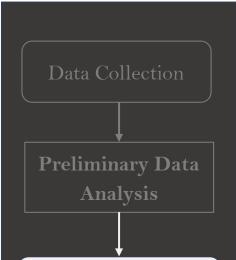
Required data	Values	Time of
		Occurrence
Max. daily prec.	95.48	03/05/2001
Max. monthly prec.	382.72	05/2007
Max. daily evap.	37.70	17/03/2008
Max. monthly evap.	137.45	05/2013
Peak daily inflow	311.46	03/10/2009
Peak monthly inflow	2,990.21	09/2002
Avg. daily inflow	14.90	
Avg. monthly inflow	453.67	

Correlation Analysis

The purpose of the correlation analysis was to evaluate the relationship between meteorological data and reservoir inflows utilizing daily data from 2000 to 2020. Climate variables included AH^{1/}, AP^{2/}, AT^{3/}, and Prec.^{4/}

Table 4 The correlation coefficients between the observed reservoir inflow and climate data

Data Source	Station Code	AH	AP	AT	Prec.
	0002 - Tak	0.5210	-01484	-0.1897	0.3648
	0006-Bhumibol Dam	0.5182	-0.1458	-0.1730	0.3693
NASA	0007-Mea Sot	0.4909	-0.1787	-0.0757	0.3603
NASA	0015-Si Samrong	0.5205	-0.1389	-0.1780	0.3628
	0017-Doi Musir	0.4909	-0.4787	-0.0757	0.3603
	0019 - Thoen	0.5049	-0.1463	-0.1327	0.3550
	0002 - Tak	0.4015	-0.1167	-0.1145	0.2840
	0006-Bhumibol Dam	0.4016	-0.0073	-0.1032	0.2886
TMD	0007-Mea Sot	0.4010	-0.1643	-0.0957	0.1966
IMD	0015 - Si Samrong	0.3185	-0.0208	-0.0266	0.1621
	0017-Doi Musir	0.2116	0.0028	0.0059	0.0341
	0019 - Thoen	0.4604	-0.0896	-0.0911	0.1913



Prediction Process

Extreme Gradient Boosting (XGBoost) Algorithm

To develop the daily and monthly prediction models of reservoir inflow of the Bhumibol Dam, the Extreme Gradient Boosting (XGBoost) which is a decision-tree-based ensemble machine learning algorithm, was used in this study.

The objective function measuring how well the model is suited with the training data, should be defined. In general, a characteristic of objective functions contains two main terms; (1) training loss function and (2) regularization term as expressed in Eq. (1)

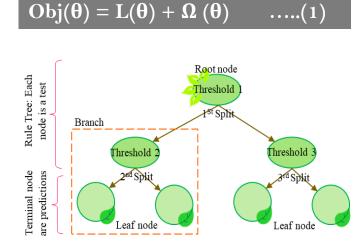


Figure 6 The decision tree components of the XGBoost

 $L(\theta)$ is the training loss function which can be categorized into two types; classification and regression losses. A common type of regression loss is mean squared error as given in Eq. (2).

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - p_i)^2 \qquad \dots \dots (2)$$

The regularization term $\Omega(\theta)$ in Eq. (3) is one of the significant term that helps control the complexity of the model and avoid overfitting.

$$\Omega \left(\theta \right) = \gamma T + \frac{1}{2} \lambda \sum_{i=1}^{T} O_{value}^{2} \qquad \dots (3)$$

6

$$\operatorname{Sim} = \frac{\sum_{i=1}^{n} (y_i - p_i)^2}{n + \lambda} \qquad \dots \dots (4)$$

The loss function $L(\theta)$ indicates the scores of the tree and leaf. It is intractable to learn all the trees at once. Instead, we use an additive strategy: fix what we have learned and add one new tree at a time. Similarity score (Sim) is computed to indicate a score of each node by using Eq. (4). $Gain value = Sim_{left} + Sim_{right} + Sim_{root}$

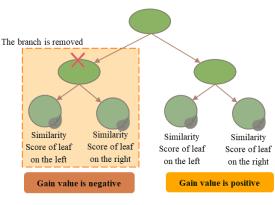


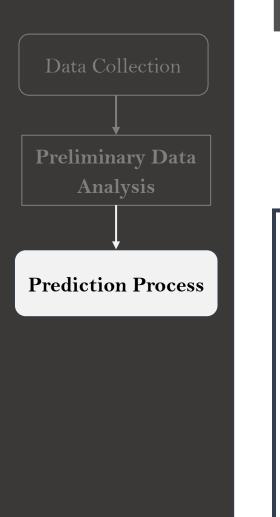
Figure 7 Steps to split the decision tree using Gain value The Gain value is calculated to measure how good a tree structure is. The Gain value indicates whether a tree can split the leaves or not. When the gain values are negative, the branch is removed as shown in Fig.7.

$$O_{value} = \frac{\sum_{i=1}^{n} (y_i - p_i)}{n + \lambda} \qquad \dots \dots (6)$$

The output values (O_{value}) are calculated by Eq. (6) for all leaves to get the final tree at the end of first model since some leaf has more than one residual.

$$p_{i}^{t} = p_{i}^{0} + \epsilon \left[\sum_{i=1}^{n} L(y_{i}, p_{i}^{0} + O_{value}) + \frac{1}{2} \lambda O_{value}^{2} \right] \qquad \dots (7)$$

The final prediction is the additive sum of the initial predicted value (p_i^o) and objective function combining with loss function and a regularization term, as shown in Eq. (7).



Model Parameters Setting

Setting the model structures were performed corresponding to the model input variables selected: *climate* and observed inflow data at time step t (Inflow/Precipitation/Humidity), the ratio of training-testing dataset (60:40/70:30/80:20), number of average inflow at the delayed time steps (3 and 7) and learning rates (0.1/0.01/0.001). Consequently, 54 scenarios of XGBoost daily and monthly models (@3×2×3×3) were trained and evaluated to produce good prediction results as shown in Fig.8.

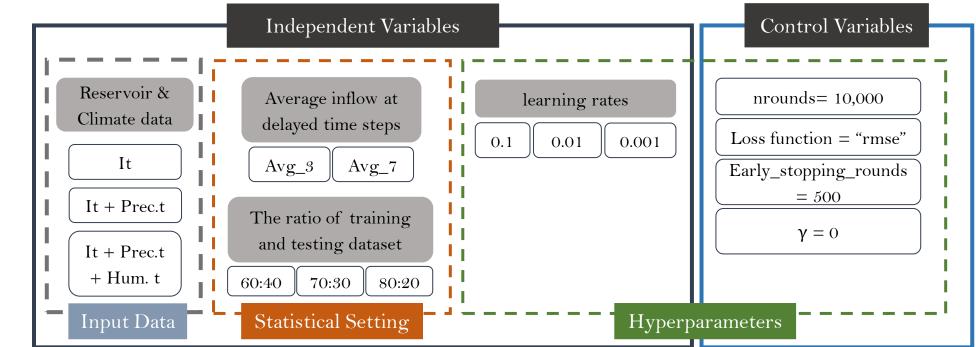
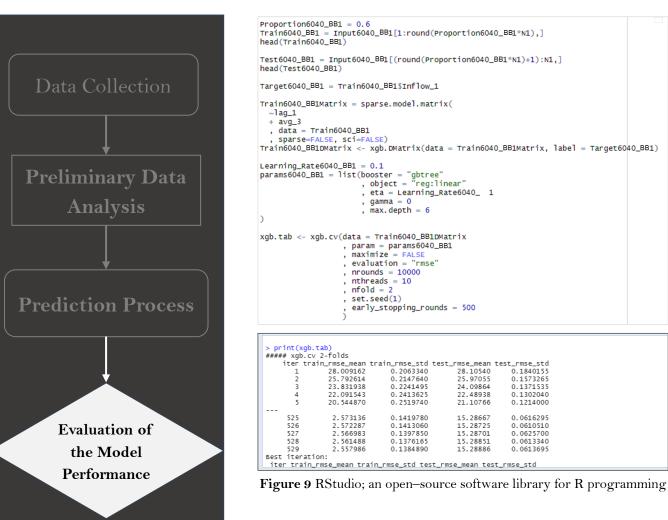


Figure 8 Input variables and model parameters for developing the reservoir inflow prediction models



To evaluate the prediction model performance, the statistical methods; Root Mean Squared Error (RMSE), Mean Squared Error (MSE), Coefficient of Determination (R^2), Coefficient of Correlation (R), and Nash–Sutcliffe Efficiency (NSE) were used to indicate the perfect match between the predicted values (P_i) and observation values (O_i).

RMSE =
$$\sqrt{\frac{\sum_{i=1}^{n} (O_i - p_i)^2}{n}}$$
(8)
 $\sum_{i=1}^{n} (O_i - p_i)^2$

$$MSE = \frac{\boldsymbol{\Sigma}_{i=1}(O_i \quad P_i)}{n} \qquad \dots \dots (9)$$

$$R^{2} = \left[\frac{\left(\sum_{i=1}^{n} (O_{i} - \overline{O}) \cdot (p_{i} - \overline{p})\right)^{2}}{\sum_{i=1}^{n} (O_{i} - \overline{O})^{2} \cdot \sum_{i=1}^{n} (p_{i} - \overline{p})^{2}}\right] \dots \dots (10)$$

$$R = \frac{\sum_{i=1}^{n} (O_i - \overline{O}) \cdot (p_i - \overline{p})}{\sqrt{\sum_{i=1}^{n} (O_i - \overline{O})^2 \cdot \sum_{i=1}^{n} (p_i - \overline{p})^2}}$$

NSE = 1 -
$$\left[\frac{\sum_{i=1}^{n} (O_i - p_i)^2}{\sum_{i=1}^{i} (O_i - \overline{O})^2}\right]$$
(12)

9

....(11)

Results & Discussions

Model setting	Model Inputs	Daily	predictior	1 model	Mont	hly prediction	model
Training: Testing Ratio	_	60:40	70:30	80:20	60:40	70:30	80:20
Inputs	Avg. Inflow t-1 to t-3 (Avg_3)	✓	V	V	-	_	V
	Avg. Inflow t–1 to t–7 (Avg.7)	_	_	-	√	✓	-
	Inflow t (It)	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Prec.t	—	_	-	\checkmark	\checkmark	\checkmark
	Hum. t				\checkmark	\checkmark	\checkmark
Learning rate	-	0.1	0.1	0.001	0.001	0.01	0.01
Training dataset	RMSE	7.9321	8.0515	7.3350	521.7199	499.3052	466.1194
	MSE	62.9187	64.8271	53.8019	272,191.6256	249,305.7171	217,267.3128
	\mathbb{R}^2	0.9219	0.9198	0.9223	0.4119	0.4254	0.4523
	R	0.9602	0.9591	0.9604	0.6418	0.6522	0.6725
	NSE	0.9089	0.8980	0.9074	0.3805	0.3814	0.4112
Testing dataset	RMSE	5.6560	5.8255	6.5457	299.2648	263.0373	256.5848
	MSE	31.9904	33.9367	42.8461	89,559.448	69,188.5968	65,835.7496
	\mathbb{R}^2	0.8854	0.8775	0.8661	0.6366	0.6621	0.6788
	R	0.9410	0.9367	0.9306	0.7979	0.8137	0.8239
	NSE	0.8619	0.8429	0.8307	0.4612	0.5975	0.6746

Table 5 The predictive performance of the reservoir inflow prediction models of Bhumibol Dam during 2000–2020

- The best daily prediction model was the observed inflow at time step t, and average inflow at the delayed time steps t-1 to t-3, the ratio of training and testing dataset 60:40 and 0.1 of learning rate
- The best monthly prediction model was the observed inflow at time step t, and average inflow at the delayed time steps t-1 to t-3, precipitation and humidity data, the ratio of training and testing dataset 80:20 and 0.001 of learning rate

Results & Discussions

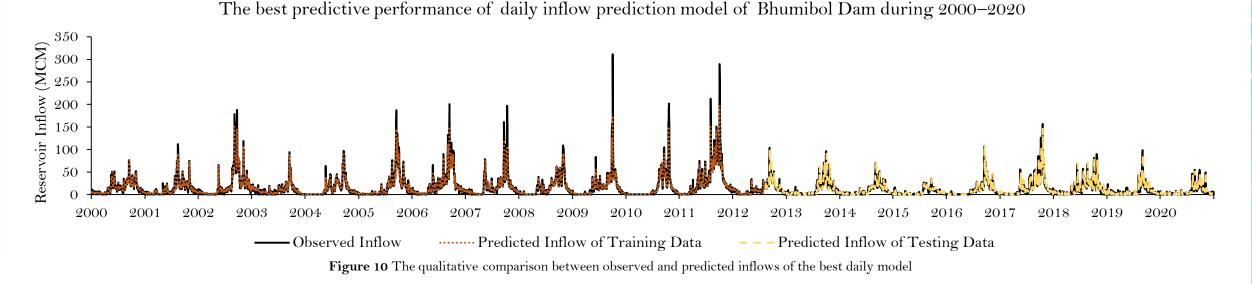


Table 6 Comparison of predicted inflows obtained from the best daily prediction models and observed inflows of Bhumibol Dam

Model type	Daily Reservoir Inflow						
Model parameters	Training–Testing Ratio: 60:40						
	Inputs: Avg	Inputs: Avg. Inflow t–1 to t–3					
	Learning R	Learning Rate: 0.1					
Predictive performance	Average inflow (MCM/day)			Peak inflow (MCM/day)			
	Observed Predicted Δ (%)		Δ (%)	Observed	Predicted	Δ (%)	
Training data set	17.52 16.71 -0.81 (-4.62)		-0.81 (-4.62)	311.46	197.05	-114.41 (-36.73)	
Testing data set	10.99	11.02	+0.03(+0.27)	156.57	145.71	-10.86 (-6.93)	

The figure 10 shows the qualitative comparison between observed and predicted inflows of the best daily model, it is obvious that the predicted inflows from training data are similar to the observed ones. However, underestimated predictive results were found for the daily and monthly prediction models when the peak inflows were considerably investigated.

Results & Discussions

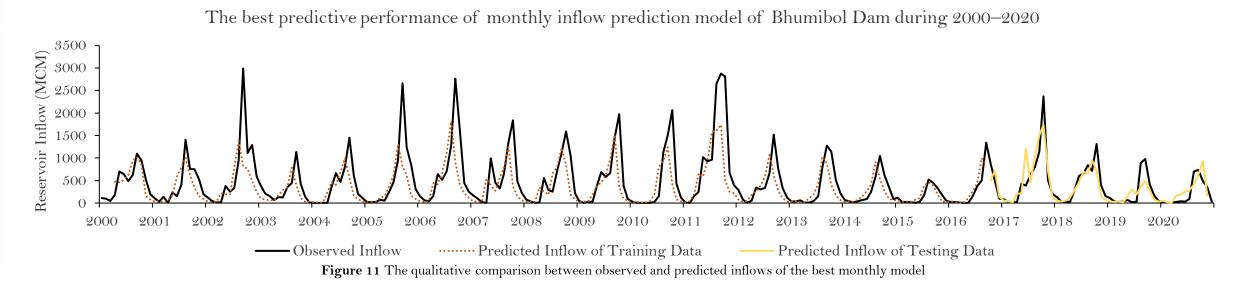


Table 7 Comparison of predicted inflows obtained from the best monthly prediction models and observe	ed inflows of
Bhumibol Dam	

Model type	Monthly Res	Monthly Reservoir Inflow						
Model parameters	Training–Te	Training–Testing Ratio: 80:20						
	Inputs: Inflo	Inputs: Inflow t, Avg. Inflow t–1 to t–3, Precipitation t and Humidity						
	Learning Ra	Learning Rate: 0.001						
Predictive performance	Average infle	Average inflow (MCM/month)			Peak inflow (MCM/month)			
	Observed	Observed Predicted Δ (%)			Predicted	Δ (%)		
Training data set	482.45	360.10	-122.35 (-25.36)	2,990.21	1,811.99	-1,178.22 (-39.40)		
Testing data set	370.31	359.75	-10.56 (-2.85)	2,373.51	1,740.76	-632.75 (-26.66)		

The figure 11 shows the qualitative comparison between observed and predicted inflows of he best monthly model, it is obvious that the predicted inflows rom training data are similar to he observed ones. However, when t comes to the peak inflows, the oredicted data cannot anticipate uch high numbers.

Conclusions

- XGBoost which is a tree-based ensemble machine learning algorithm, was used to predict the daily and monthly reservoir inflows of the Bhumibol Dam, Thailand.
- The XGBoost model presented more reliable and robust prediction results especially for the daily prediction model with the highest R², R, NSE and small values of RMSE and MSE. It is found that the predictability of the XGBoost model to predict the daily reservoir inflow with good precision is strongly higher than the monthly inflow.
- Predicting the average values of the daily and monthly inflows gives the prediction results definitely closer to the observed inflows. However, the capability to characterize and predict the dynamics of extreme values of these two developed models is still limited. Therefore, to improve the quality of machine learning algorithm for hydrological prediction, the model parameters need to be optimized. In addition, conducting the further study using the technological advancement of machine learning is highly encouraged for the achievement of hydrological forecast on water resources management.

