

THA 2022 International conference

Moving Towards a Sustainable Water and Climate Change Management After COVID-19

January 27th, Phnom Penh, Cambodia

Assessing Flood Risk in Prek Thnot River Basin Using AHP and GIS Analysis

Chanponleourothana Samrith¹, Ty Sok^{1,2}, Sophal Try³, Ilan Ich¹, Ratboren Chan^{1,2}, Chantha Oeurng¹

¹ Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia.
 ² Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia.
 ³ Disaster Prevention Research Institute, Kyoto University, Japan.

Presenter: Chanponleourothana SAMRITH

• Flood Hazard Index (FHI)

Content

Conclusions

👤 🍐 🔘 🌒 🌒 🞯 🦚 👬 🔛

THA 2022 International Conference on Moving Towards a Sustainable Water and Climate Change Management After COVID-19

1.1 Background

- In Cambodia, the flood event in 2000 was reported as a severe flood that affected more than 3.4 million people, damaged 768 houses, and killed 347 people.
- In 2020, there was reported flooding killed 11 people and affected about 67955 household.
- The number of damages were decreased compared to flood in 2000.
- **Prek Thnot River Basin** is one of the largest basins in lower Mekong Basin that is a frequent location of calamitous frequent flood and flash floods, where the people suffered critical damages from flood.

- This study aims to determine flood risk levels across the Prek Thot River Basin using coupling AHP– GIS analysis.
 - To achieve the overall goal, specific objectives to be done:
 - (1) Classify the parameters of flood hazard
 - (2) Weight of AHP method
 - (3) Develop flood hazard map
 - (4) Sensitive analysis and Confirmation of flood risk map.

Conclusions

THA 2022 International Conference on Moving Towards a Sustainable Water and Climate Change Management After COVID-19

2.1 Study Area

The Prek Thnot River Basin

- Partly covers : Koh Kong, Kampong Speu, Kampot, Takeo, Kandal, and Phnom Penh
- Total area : 6660 km²
- Elevation : -4 m 1815 m MASL

Table 2.1. Requirement data input in assessing flood risk in Prek Thnot River Basin

Data input	Data description	Period	Data source	
Rainfall	Ground observed rainfall measures	1997 - 2011	DHRW of	
	daily time series; eight ground		MOWRAM	
	observed station: Kampong Speu,			
	Kong Pisey, Oral, O Taroat, Peam			
	Khley, Phnom Srouch, Prey Pdao, and			
	Trapeang Chor			
Digital Elevation	Resolution 30m × 30m, Geographic	-	ASTER-	
Model (DEM)	coordinated latitude and longitude with		GDEM 2	
	16 bits in units of vertical meters			
Soil type	Resolution 250m×250m, soil type	2002	MRC	
	separated into 17 classes			
Land used	Resolution 250m×250m, land-use in	2002	MRC	
	Prek Thnot River Basin is separated			
	into 18 classes			

Methodology

Results & Discussion

Conclusions

Le Change Management After COVID-19

2.3 Study framework

- The Analytical Hierarchy Process (AHP) is one of the Multi Criteria decision-making technique that can help us make better analyzing complex problems.
- Pairwise comparison from AHP is accepted when Consistency Ratio (CR) is less than 10%. $CR = \frac{CI}{RI}, \ (CR < 10\%)$

CI: the consistency index

RI: the random index

2.3 Study framework (cont.)

Table 2.2. The definition of comparative importance

The intensity of					
Importance on an	Definition				
Absolute Scale					
1	Equal Importance				
2	Weak or slight				
3	Moderate importance of one over				
Α					
4	Moderate plus				
5	Essential or strong importance				
6	Strong plus				
7	Very strong importance				
8	Very, very strong				
9	Extreme importance				

 A composite FHI contributes the rating score and the priority weight from the AHP of each parameter. The composite FHI is defined and calculated following:

$$\mathbf{FHI} = \sum_{i=1}^{n} \mathbf{r}_{i} \times \mathbf{w}_{i}$$

$$FHI = F \cdot w_{F} + I \cdot w_{I} + G \cdot w_{G} + U \cdot w_{U} + S \cdot w_{S} + E \cdot w_{E} + D \cdot w_{D}$$

Where:

- r_i the score rating of the flood causative factor in each point
- w_i the effective weight of each flood causative factor
- n the number of flood causative factors

Introduction	Methodology	Results & Discussion	Conclusions	
2.4 Thema	atic maps			
N C S L Z Z Z	vation 1 2 3 4 5 6 7 8 4 4 5 6 7 8 4 4 5 6 7 8 4 4 5 6 7 8 4 4 5 6 7 8 4 4 5 6 7 8 4 4 5 6 7 8 4 5 6 7 7 8 7 7 8 7 7 8 8 7 8 8 8 7 8 8 7 8 8 8 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	$ \underbrace{\begin{array}{c} \text{Meteorological station} \\ \text{Rainfall Intensity} \\ 1 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	Slope 1 2 3 4 5 6 7 8 0 <u>5</u> 10 <u>20 30 40</u>	Flow accumulation 1 2 3 4 5 0 5 0 5 0 0 5 0 0 1 2 3 4 0 5 0 0 1 2 3 4 6 5 0 0 1 2 3 4 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0

CR=0.9% <10%, Acceptable

Parameters	R	Е	SI	DD	D	F	So	LU
Rainfall	1	1	1	5	6	3	8	9
Elevation	1	1	1	5	6	3	8	9
Slope	1	1	1	5	6	3	8	9
Drainage Density	0.20	0.20	0.20	1	1	0.50	2	3
Distance to river	0.17	0.17	0.17	1	1	0.33	2	3
Flow accumulation	0.33	0.33	0.33	2	3	1	3	4
Soil type	0.13	0.13	0.13	0.50	0.50	0.33	1	1
Land-use	0.11	0.11	0.11	0.33	0.33	0.25	1	1
AHP-Weight	0.251	0.251	0.251	0.053	0.048	0.096	0.028	0.024
AHP-Weight (%)	25	25	25	5	5	10	3	2

Table 3.2. Normalize pairwise for flood hazard, Analytical Hierarchy Process

Conclusions

THA 2022 International Conference on Moving Towards a Sustainable Water and Climate Change Management After COVID-19

11

3.2 Sensitive analysis

Parameter	Class	Class no.	Score	Parameter	Class	Class no.	Score	Parameter	Name	Туре	Score	Parameter	Name	Score
Elevation (m)	< 61	1	5	Flow accumulation (m ³ /s) (×10 ⁶)	0 - 0.18	1	3	_	Ag	С	5		AGRI	3
	61.01 - 134	2	3				2		Ao	В	3		CMCS	5
	134.01 - 241	3	3		0.18 - 1.08	2	3		LPd	D	9		DCMS	3
	241.01 - 383	4	2		1.08 - 2.44	3	5		LPd/CMd	D	7		DECD	1
	383.01 - 558	5	1		2 44 - 4 43	4	8	Soil types	FLe	В	1		EHCD	1
	558 01 - 707	6	1		2.77 - 7.75	-	0		GLU PTd		9 5		EMLD	3
	707.01 1.157	7	1		4.43 - 5.98	5	9		PL d/ACa		0 0		EVMS	3
	191.01 - 1,157	7	1		0 - 0.109	1	1		ACp	C 5 C 5	5		GRAS	7
	1,157.1 - 1,815	8	1	-	0.44 0.040	2	4		ACpg		5		INUN	9
	56.905 - 85.259	1	5	DD (m/km²)	0.11-0.219	2	1		ACg	С	5	Land-use	MEDM	1
	85.260 - 89.310	3	5		0.22 - 0.328	3	3		ACh/LPd	В	5		REGR	7
Rainfall	89.311 - 102.48	4	5		0 329 - 0 438	Δ	З		ACha	В	3		ROCK	9
(Inlessen	102.49 - 129.82	5	7		0.023 - 0.430	-	5	CMg	CMg C	5		URBN	9	
(mm)	129.83 - 182.48	6	6		0.439 - 0.547	5	5		CMef	CMef B Reside D	3		WATR	9
(1111)	182.49 - 193.62	7	2		0.548 - 0.657	6	7		Reside		9		WETD	9
	193.63 - 315.14	8	4		0 658 - 0 766	7	8		VV	D	9	+	WSDR	1
	0 - 2.138	1	7	-	0.000 - 0.700	,	0						WSEV	1
	2.139 - 5.226	2	5		0.767 - 0.876	8	9						WSIN	7
	5.227 - 9.026	3	3	Distance to river (m)	<200	1	9							
Slope	9.027 - 14.01	4	2		400	2	7							
(Degree)	14.02 - 19.48	5	1		800	З	5							
	19.49 - 25.65	6	1		000	0	0							
	25.66 - 33.26	7	1		1600	4	3							
	33 27 - 60 57	8	1		>2000	5	1							

Table 3.2. The score of each classes of the eight parameters

INSTITUTE OF TECHNOLOGY OF CAMBODIA

Conclusions

THA 2022 International Conference on Moving Towards a Sustainable Water and Climate Change Management After COVID-19

3.3 Flood risk map

- The risk of flooding is linked to combined action of many different 8 factors such as elevation, slope, rainfall, drainage density, distance to river, soil type, and land use.
- **FHI** defines five levels of risk, ranging from very low, low, moderate, high to very high.

Fig. 3.2. Area cover by flood risk level

Fig. 3.1. Flood risk map of Prek Thnot river basin

Fig. 3.3. District area of flood hazard level cover

3.4 Confirmation with satellite flood map

Fig. 3.4. a) flood risk AHP-GIS, b) Flood map from Google Earth Engine, c) Flood map from Global Surface Water

- In this study, the eight flood influence factors were selected as the parameters for deriving the flood risk map of Prek Thnot River Basin using the AHP-GIS method.
- The developed flood map of Prek Thnot River Basin was confirmed to be acceptable with the other two satellite flood maps.
- In conclusion, this study's results indicated the flood risk level tendency extent at the low-lying area and area along the Prek Thnot River and its reach. The very low, low, moderate, high, and very high level covered 694.55km², 1079.09km², 2186.82km², 1263.33km², and 310.75km² of the basin of the Prek Thnot River, respectively.
- In view of the results obtained, the Prek Thnot River Basin is heavily exposed to the risk of flooding at the downstream and area along the Prek Thnot River. Thus, this resultant map can serve as a guideline to decision makers for potential anticipatory measures, better land use planning and flood risk management under climate change.

Author would like to acknowledge and thank the Cambodia Higher Education Improvement Project

(Credit No. 6221-KH) for their financial support

HydroMet and Disaster Management Lab

THANK FOR YOUR ATTENTION!

CONTACT

OEURNG Chantha, PhD

Deputy Director

Institute of Technology of Cambodia,

Russian Federation Blvd, PO. Box 86, Phnom Penh

Mobile: (+855) 12 895 840

Email: chanthaposat@yahoo.com / chantha@itc.edu.kh / oeurng.chantha@gmail.com

SOK Ty, PhD

Lecturer-Faculty of Hydrology and Water Resources

Researcher-Research and Innovative Center

Institute of Technology of Cambodia,

Mobile : (+855) 11 980 698

Email: sokty@itc.edu.kh