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Background

0 Hydrological modelling is limited by various uncertainties (e.g. input, structure, parameter etc.)

O Data Assimilation (DA) has proven to be an important tool in improving the models and their

forecasts by reducing the associated uncertainties



Data Assimilation

An approach to integrate information from multiple sources in
order to improve model accuracy

provides a framework to merge model and observations based on

their uncertainties

Improved

Data Assimilation (DA) = Model + Observation h Model Results

Source: http:/fwww.cambridgeblog.org/2017/05/dat

Background
Observation
Analysis
— Model

Formally, Data Assimilation involves finding the best estimates of

the system state X given the noisy model of the system dynamics M

State

and the noisy observations Z.

Beyond state estimation, parameter identification is also possible .

within the DA framework

Time
Reproduced from: Hydrologic Data Assimilation. Walker, |.P. and Houser, P. R.
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EnKF vs EnOlI

Forecast ® —> xl, = f(x%_1,u., 0) + w;

Background state ensembles it=rf ( it—-1 Ut ) i

@ Observation Update —> @ xi= x? +K(y; — Hx?)

® Updated ensembles K = PPHT(HPPHT + R)™!
t=k t=k+l1 t=k+2 t=k t=k+1 t=k+2

Ensemble Kalman filter (EnKF) Ensemble Optimal Interpolation (EnOI)

Q0 Unlike the EnKF, EnOlI is computationally cheap
O But, online estimation of error covariances is not possible in EnOI

U How to define the covariance matrices to address the bias present in model parameters ?




Hydrological Model

DlStrlbuted HVdrOlOgical MOdel 1D Diffusion in River and Interaction with Land

Subsurface + Surface

The two dimensional Rainfall-Runoff-Inundation
(RRI) model (Sayama et al., 2012)

Separate river (1D diffusive wave) and slope
components (2D diffusive wave)

Saturated subsurface + saturation excess overland

flow module used

2D Diffusion on Land Vertical Infiltration

Source: Rainfall-Runoff-Inundation (RRI) Model Manual (Sayama, T.)

Fig. Schematic diagram of the Rainfall-Runoff-Inundation (RRI) model

hr : water level in river <———— o state variable (to be updated by DA)
hs : water level in slopes o also, assimilated variable
qr : river discharge



Study Area and Data

Study area:

o Kamo river basin

> 214 km? drainage area

Data:

o Topographical information

> applied at 5s resolution

> based on Japan flow direction map (Yamazaki et al.,
2018)

o Rainfall data:

> Radar raingauge analyzed product (Japan
Meteorological Agency)
River stage observations:

>  Synthetically generated

Flood events

]
]

2013 Typhoon 18
2018 July flood

A Assimilated stations

Fig. Kamo river basin




Experimental Setup

Analysis data (from JMA)
(assumed true rain)

RRI
"true" parameters

N

» add noise from an assumed
distribution
i.e. sampled from
N(0, (0.05 x true river stage)?)

Perturb
States

Qe ) gy Qi

Synthetic Truth generation

*IMA: Japan Meteorological Agency

2018/07/05

21 hours |

~hours

| Update stage |

Forecast stage

Analysis rainfall

|

Forecast rainfall

!

RRI
biased parameters

RRI
corrected parameters

t=t+1

——  Updated parameters

!

Filter
update

Parameter “true” value biased value
Manning’s n (river) 0.03 0.015
Manning’sn (slope) 0.3 0.5
Hydraulic 0.075 0.04

conductivity (m/s)

Assimilation experiment




Parameter Estimation with the EnKF

truth ensemble member
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Manning’s n (river)
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0.254

truth
ensemble mean

Fig. Parameter ensemble evolution (EnKF)

time step

e sy s, S— |
10 15 20
time step
EnKF was able to

correctly approximate the
two sensitive parameters
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Parameter Estimation with the EnOI

Time

truth

v

xX®

ensemble

/t=0,

before update
(random samples)

t=0,
after update
l (9t+1)b — (et)a

t=1,
before update
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Covariance Matrices for EnOI Implementation

Save background and observation ]

/ error COVal‘lance matnces

covariance

- S o S
X=X =28 X o = x = XE X # X =X X X=X o x
* _® *_ _® s __®

time step



Results

Manning’s n (river)

Hyvdraulic conductivity

Covariance matrices
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Fig. Parameters at the beginning and end of the update stage 13




Results

Manning’s n (river)

Hyvdraulic conductivity
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Fig. Parameters at the beginning and end of the update stage

X 4+ D> O

(0]

different covariance
matrices

*RJ O

In most cases, Manning’s n
was better approximated

Assimilating discharge

which is sensitive to ka may
yield better estimation of ka
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Results

Manning’s n (river)

Hyvdraulic conductivity

2013 set 2018 set

0.04- 8 o
QX
o v

1o I ST | B B ¥ .y, _ . ® ______
0.03 X O &5 -OA-; % & * BV% E@ &

o

@]
ik
IC ¢

0.01- = === truth

(0AY "4
0.2- o x o o
° =& o
X & o & "
0.1- AeK & -
b s e e s A T N e i 5 f____*g____g__% ____________
Y
0.0+ % % | i
case | case2 «case3 «cased cases case 1 case2 «case3 «cased case?S

Fig. Parameters at the beginning and end of the update stage

X 4+ D> O

o

different covariance
matrices

*RJ O

Even when one of the
parameters was supplied
correctly, discrepancy
between forecast and
observation meant that this
parameter was also adjusted
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Issues

o high cross-covariance may introduce
instabilities
o gain should be limited
Manning’s n (river)

0.04 4

”03. ______ -— - [RRpE iy K (R —— [R— ____ et e __ = __ -
0.02 4 g i
0.014

- == ~— truth

time step

Fig. Parameter evolution for two different covariance matrices
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Summary

O This study investigated the efficacy of a computationally inexpensive assimilation algorithm i.e. the
ensemble optimal interpolation in reducing the biases in the model parameters by using synthetic river
stage observations for assimilation

U Ensemble Kalman filter was first applied to two flood events to yield a set of covariance matrices (both
background and observation error) which were then utilized to update the model parameters of the
deterministic model runs

d  While large magnitudes of covariances led to oscillations in the parameters, gradual nudging through
small gains led the parameters - especially the manning’s n for river - to be close to the truth at the end

of the assimilation period

18



State Estimation with EnOlI
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Experimental Setup

Analysis data (from JMA)
(assumed true rain)

RRI
"true" parameters

Perturb
States

L

» add noise from an assumed
distribution

i.e. sampled from
N (0, (0.05 x true river stage)?)

Qe ) gy Qi

Synthetic Truth generation

*IMA: Japan Meteorological Agency

2018/07/05
21 hours

~hours

Update stage

Forecast stage

Noise + Analysis rainfall

|

Forecast rainfall

!

true
RRI
bi, parameters

true RRI

coxed parameters

t=t+l

Filter
update
states

v
L— ¢ Updated para A@

Prediction

.

Assimilation experiment
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Input uncertainty

O following Nijssen and Lettenmaier, 2004

Relative bias(=0)
Standard normal error

1
Corrupted 5 Pc — ( * B)

— ¥ GXp(\/ln[Ez —+ 1]8(0, 1))P <——— True precipitation
precipitation V E2 + |

Relative error (= 0.75)
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Results

[ ]
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Fig. Average water level RMSE (i) at the three validation locations




Summary

O State estimation with EnOI led to better performance compared to the deterministic model run during

the update stage
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Future Steps

O Can the covariance matrices be adaptively changed within the EnOI framework?
O Ifso, does that yield better performances?

O Extend the study to other events and model uncertainties including experiments with real data
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