

Potential of Ensemble Optimal Interpolation in Tackling Parameter Bias

Manoj Khaniya, Yasuto Tachikawa, Takahiro Sayama Kyoto University 27/01/2022

Background

- □ Hydrological **modelling** is limited by various **uncertainties** (e.g. input, structure, parameter etc.)
- □ **Data Assimilation (DA)** has proven to be an important tool in improving the models and their forecasts by reducing the associated uncertainties

Data Assimilation

- An approach to integrate information from multiple sources in order to improve model accuracy
- provides a framework to <u>merge model and observations</u> based on their uncertainties
- **Data Assimilation (DA) = Model + Observation**

Source: http://www.cambridgeblog.org/2017/05/data-assimilation-in-every-day-life/

- Formally, Data Assimilation involves finding the <u>best estimates of</u> <u>the system state</u> *X* given the noisy model of the system dynamics *M* and the noisy observations *Z*.
- Beyond state estimation, <u>parameter identification</u> is also possible within the DA framework

EnKF vs EnOI

- Background state ensembles
- Observation
- Updated ensembles

- **Unlike the EnKF**, EnOI is computationally cheap
- **D** But, online estimation of error covariances is not possible in EnOI
- □ How to define the covariance matrices to <u>address the bias present in model parameters ?</u>

Hydrological Model

- Distributed Hydrological Model
- The two dimensional Rainfall-Runoff-Inundation (RRI) model (Sayama et al., 2012)
- Separate river (1D diffusive wave) and slope components (2D diffusive wave)
- Saturated subsurface + saturation excess overland flow module used

Fig. Schematic diagram of the Rainfall-Runoff-Inundation (RRI) model

hr : water level in river hs : water level in slopes qr : river discharge state variable (to be updated by DA)
also, assimilated variable

Study Area and Data

Study area:

- □ <u>Kamo river basin</u>
- > 214 km² drainage area

Data:

- **<u> Topographical information</u>**
- ➤ applied at 5s resolution
- based on Japan flow direction map (Yamazaki et al., 2018)
- □ <u>Rainfall data:</u>
- Radar raingauge analyzed product (Japan Meteorological Agency)
- <u>River stage observations:</u>
- Synthetically generated

Flood events

- □ 2013 Typhoon 18
- □ 2018 July flood

Fig. Kamo river basin

Parameter Estimation with the EnKF

Fig. Parameter ensemble evolution (EnKF)

Parameter Estimation with the EnOI

Covariance Matrices for EnOI Implementation

time step

13

Issues

Fig. Parameter evolution for two different covariance matrices

Summary

- This study investigated the efficacy of a computationally inexpensive assimilation algorithm i.e. the ensemble optimal interpolation in reducing the biases in the model parameters by using synthetic river stage observations for assimilation
- Ensemble Kalman filter was first applied to two flood events to yield a set of covariance matrices (both background and observation error) which were then utilized to update the model parameters of the deterministic model runs
- While large magnitudes of covariances led to oscillations in the parameters, gradual nudging through small gains led the parameters - especially the manning's n for river - to be close to the truth at the end of the assimilation period

State Estimation with EnOI

*JMA: Japan Meteorological Agency

Input uncertainty

□ following Nijssen and Lettenmaier, 2004

Fig. Average water level RMSE (m) at the three validation locations

Summary

 State estimation with EnOI led to better performance compared to the deterministic model run during the update stage

Future Steps

- □ Can the covariance matrices be adaptively changed within the EnOI framework?
- □ If so, does that yield better performances?
- **u** Extend the study to other events and model uncertainties including experiments with real data

👱 🍐 🕘 💩 🔞 🐼 🥙 🗯 👔 THA 2022 International Conference on Moving Towards a Sustainable Water and Climate Change Management After COVID-19, 26-28 January 2022, Online platform

Thank you very much for your kind attention !!