

THA 2022 International Conference on

Moving Towards a Sustainable Water and Climate Change

Management After COVID-19

26-28, January 2022

Impacts of Climate Change and Dam Construction on Rice Damages in the Cambodian Floodplain of the Mekong River Basin

Sophal Try, PhD

JSPS Research Fellow

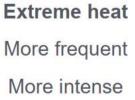
Innovative Disaster Prevention Technology and Policy Research Lab. DPRI | Kyoto University

Email: trysophal001@gmail.com / try.sophal.35n@st.kyoto-u.ac.jp

Information Classification: General

Background of Climate Change

- Climate change refers to the significant long-term changes in the global climate.
- Climate change is generally caused by *human activities*, driving the increase of greenhouse gases (GHGs).
- Climate change, one among current global hot issues, is the main factor in driving the change in global water cycle, particularly *spatiotemporal pattern* of *precipitation* and *evapotranspiration*.
- Therefore, the climate change currently threatens its impact on *river* flow and flood inundation characteristics worldwide.


Background of Climate Change

SIXTH ASSESSMENT REPORT

Working Group I – The Physical Science Basis

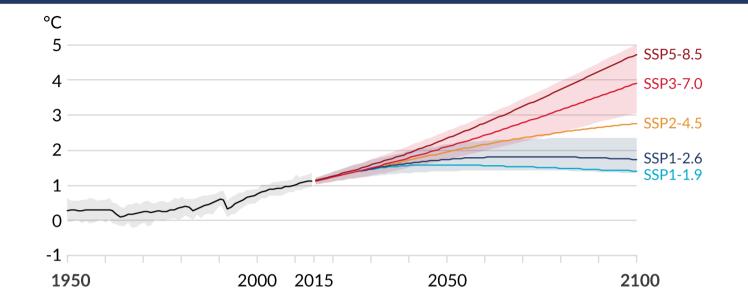
INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

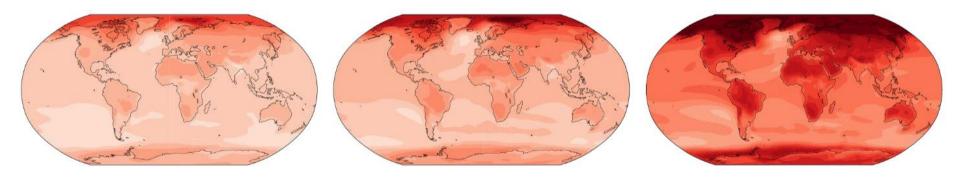
Heavy rainfall More frequent More intense

Drought

Increase in some regions

Fire weather

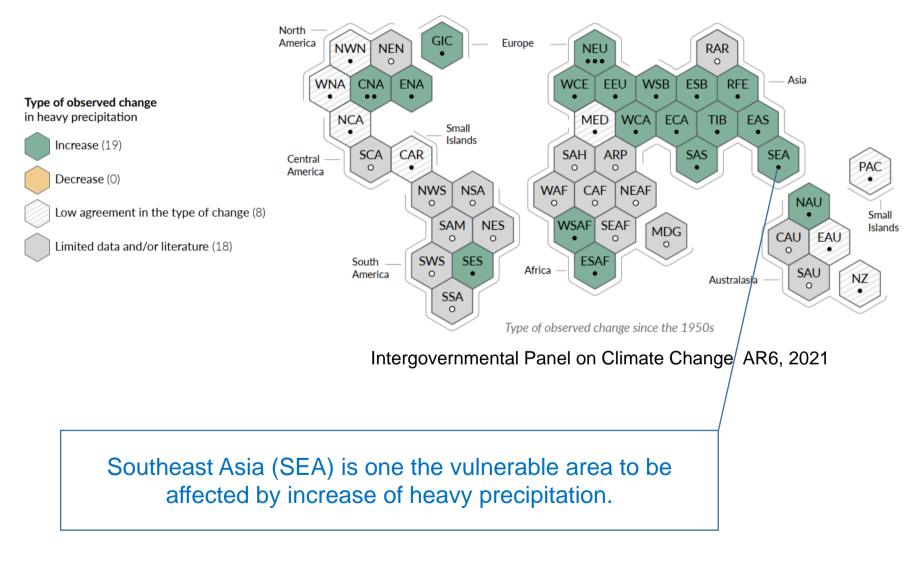

More frequent

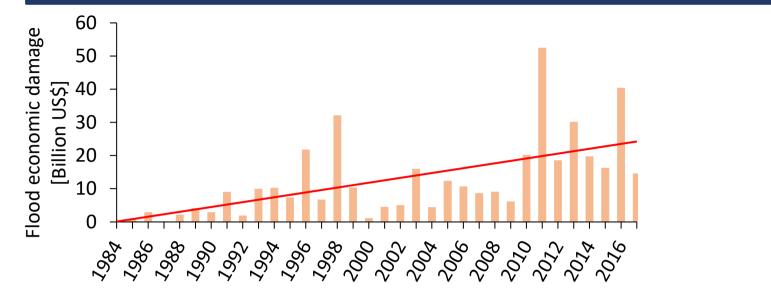


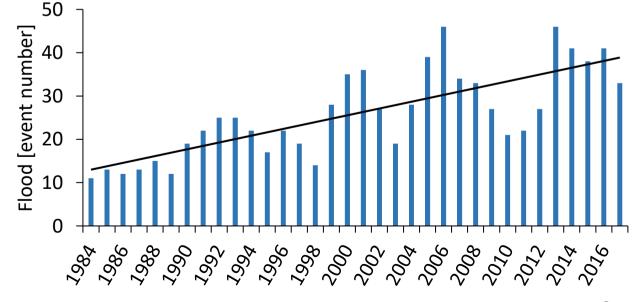
Ocean

Warming Acidifying Losing oxygen

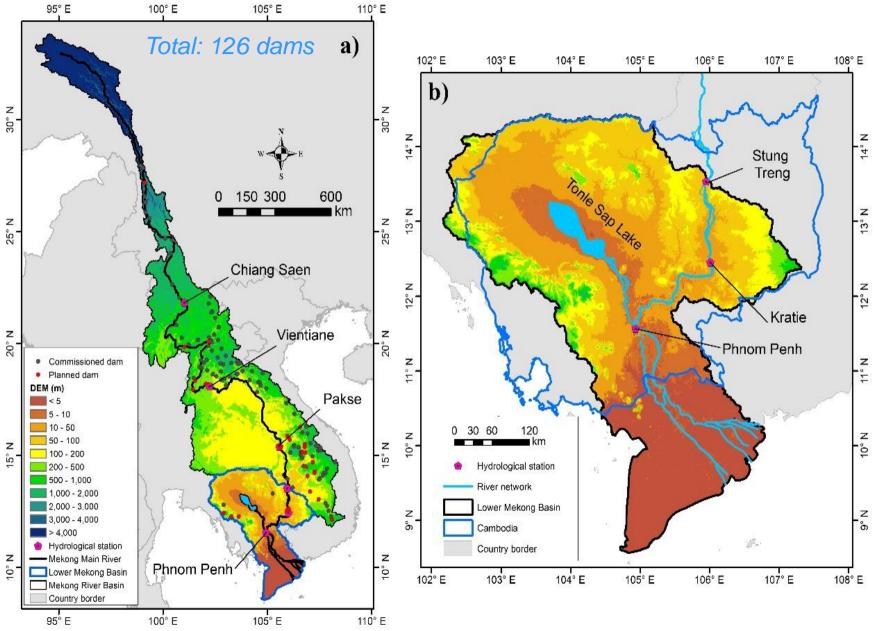
Global Surface Temperature Change

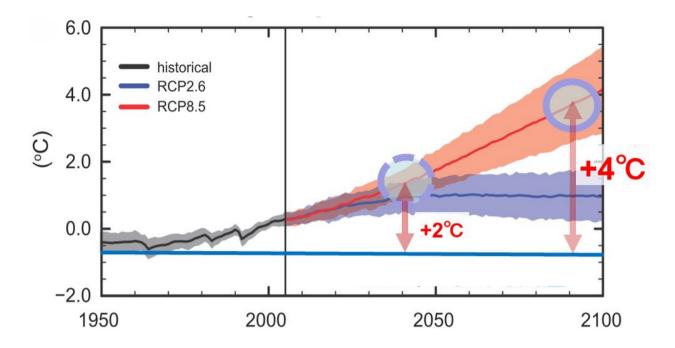






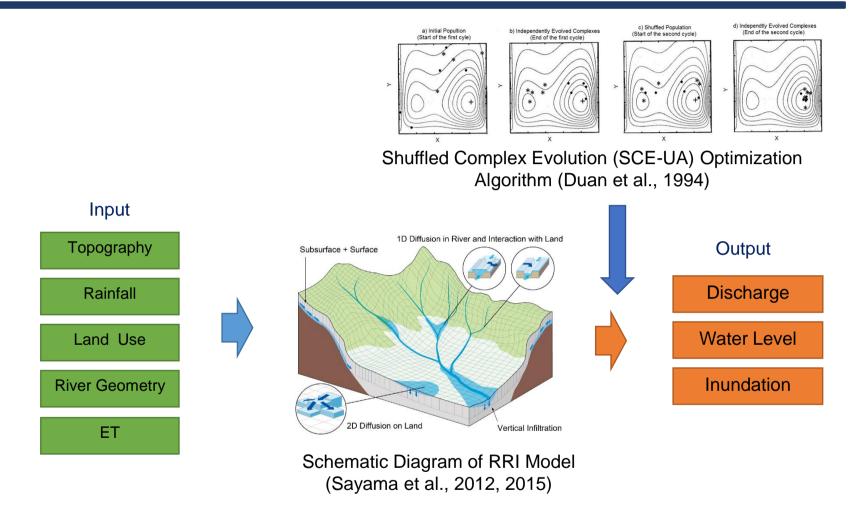
New IPCC AR6 Is Available Now [CMIP6 GCM]


Flood Information in 4 Lower Mekong Countries


(source: EM-DAT database)

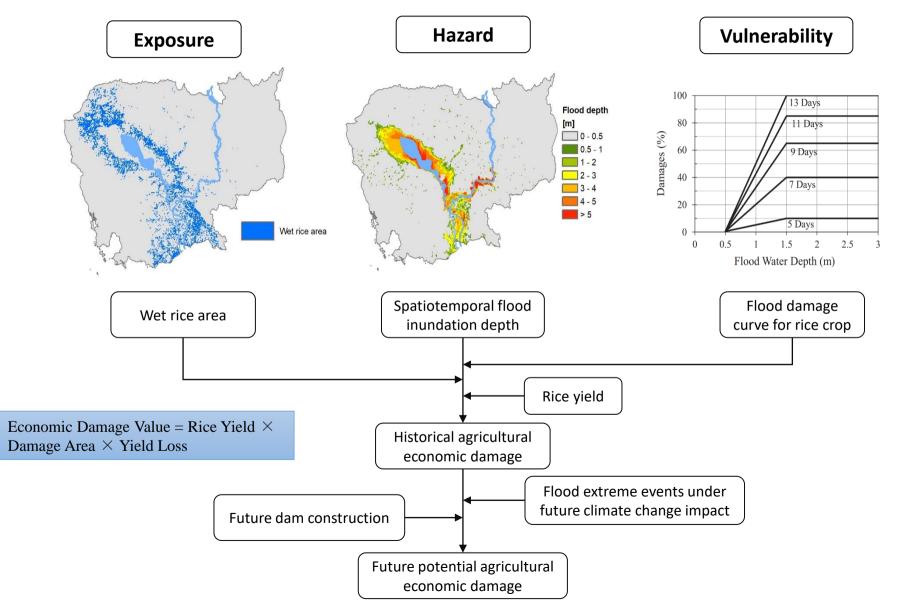
Study Area and Dam Construction

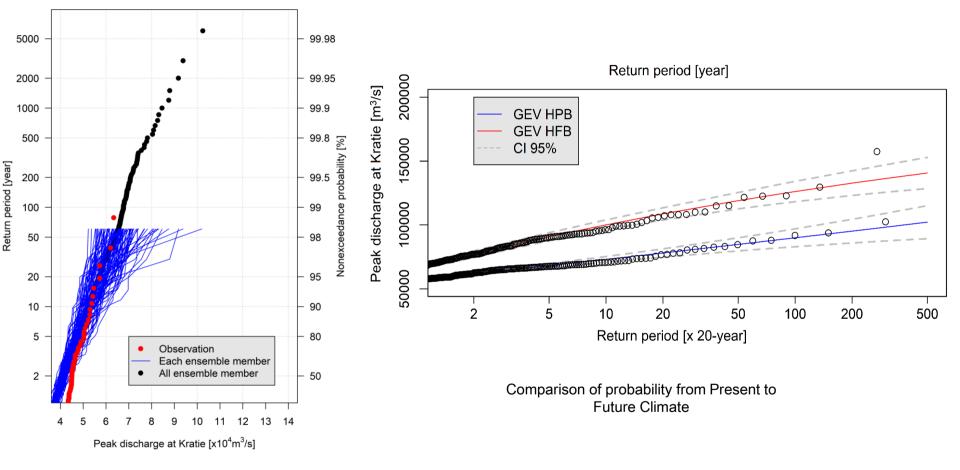
Information Classification: General


d4PDF Dataset

- d4PDF: projected under *global mean surface temperature* 4 degrees warmer than the pre-industrial climate.
- d4PDF data considered SST from *six CMIP5 model* outputs: CCSM4, GFDL-CM3, HadGEM2-AO,MIROC5, MPI-ESM-MR, and MRI-CGCM3 namely as CC, GF, HA, MI, MP, and MR respectively.
- Historical climate (1951-2010): *100 ensemble members* (6000-year)
- Future climate (2051-2110): 90 ensemble members (6-SST x 15 members: 5400-year).

~ Meteorological Research Institute⁸, Japan

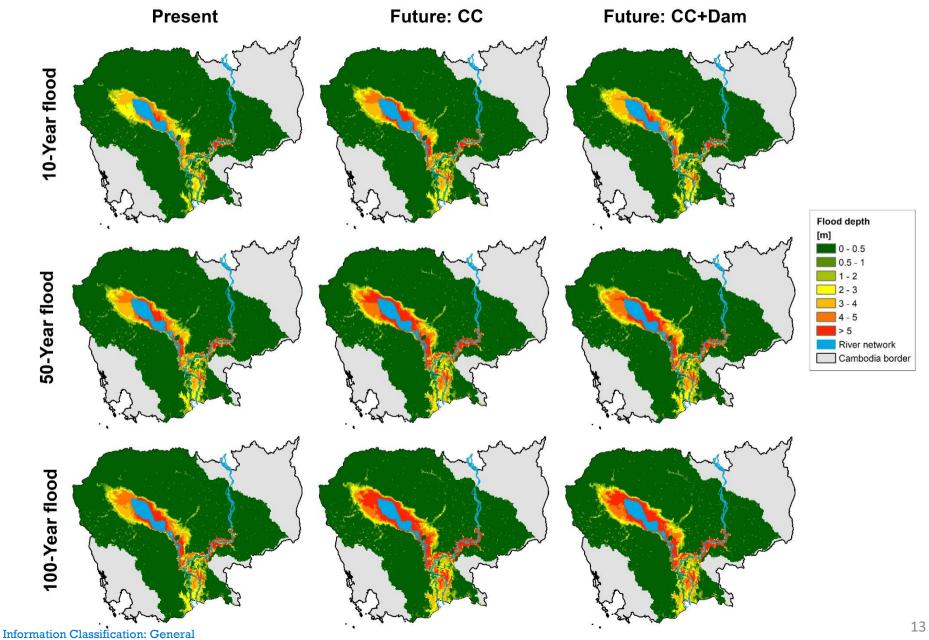

Rainfall-Runoff-Inundation (RRI) Model


Rainfall-Runoff-Inundation (RRI) model has important features:

- Simulate rainfall-runoff and flood inundation simultaneously
- Deal with slopes and river channel separately
- Be able to consider surface flow and subsurface flow
- 1D diffusive wave for river routing and 2D diffusion for slope

Research Framework

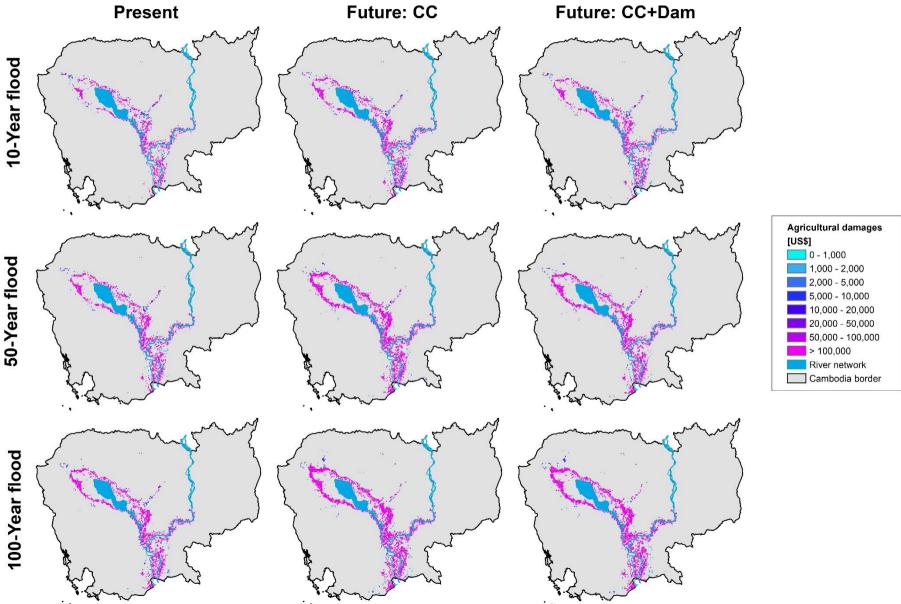
Extreme Flood Frequency


Comparison of probability plot of annual peak discharge at Kratie.

Try et al., (2020). Projection of extreme flood inundation in the Mekong River basin under 4K increasing scenario using large ensemble climate data. Hydrological InfoProcesseS134;22:ation: General

Verification of Damage Estimation

Flood event	Total flood area [M ha]	Simulated damage area [ha]	Referenced damage area [ha]	Total simulated damage [M US\$]	Referenced total damage [M US\$]	Reference sources
2000	2.30	420,470	402,940ª	147.53	155.10 ^b	^a Reported by Ros et al., (2011) ^b Calculated by Shrestha et al., (2014)
2006	2.19	438,200	-	148.65	123.40 ^c	^c Calculated by Shrestha et al., (2014)
2009	1.83	209,400	-	59.49	56.50 ^d 60.00 ^e	^d Reported by RGC, (2010) ^e Reported by ADB, (2012)
2011	2.39	563,640	400,000 ^f 583,480 ^g	198.33	179.60 ^f 189.00 ^g 197.00 ^h	^f Reported by ADB, (2012) ^g Calculated by Shrestha et al., (2019) ^h Calculated by Kwak et al., (2015)


Changes of Extreme Flood Events

Changes of Extreme Flood Events

Extreme event	Climate scenario	Period	Annual peak discharge [m ³ /s]	Total flood area $[\times 10^6 \text{ ha}]$	Total flood volume $[\times 10^9 \mathrm{m^3}]$
	HPB	1951-2010	50,980	2.20	68.99
10-year flood	HFB_4K	2051-2110	61,768 (+ 21%)	2.46 (+ 12%)	86.74 (+ 26%)
	HFB_4K_dam	2051-2110	54,327 (+7%)	2.36 (+7%)	78.10 (+ 13%)
50-year flood	HPB	1951-2010	61,588	2.46	86.45
	HFB_4K	2051-2110	77,103 (+25%)	2.80 (+14%)	110.35 (+28%)
	HFB_4K_dam	2051-2110	68,507 (+ 11%)	2.70 (+ 10%)	101.58 (+ 18%)
	HPB	1951-2010	67,400	2.59	95.43
100-year flood	HFB_4K	2051-2110	89,331 (+ 33%)	3.03 (+17%)	125.79 (+ 32%)
	HFB_4K_dam	2051-2110	81,734 (+ 21%)	2.96 (+ 14%)	118.88 (+25%)

Changes in Flood Damages

Changes in Flood Damages

Extreme event	Climate scenario	Period	Damage area [×10³ha]	Agricultural damage [Million US\$]
	HPB	1951-2010	478.68	160.35
10-year flood	HFB_4K	2051-2110	590.73 (+ 23%)	211.15 (+ 32%)
	HFB_4K_dam	2051-2110	539.56 (+ 13%)	188.05 (+ 17%)
	HPB	1951-2010	589.40	210.26
50-year flood	HFB_4K	2051-2110	784.41 (+ 33%)	289.25 (+ 38%)
	HFB_4K_dam	2051-2110	708.48 (+ 20%)	260.77 (+ 24%)
	HPB	1951-2010	659.98	239.69
100-year flood	HFB_4K	2051-2110	900.82 (+ 36%)	332.21 (+ 39%)
noou	HFB_4K_dam	2051-2110	852.65 (+ 29%)	314.87 (+ 31%)

Summary and Conclusion

- The future projection of climate change under 4K warming scenario shows a *significant increase* of *flood magnitude and damages* of extreme flood events (i.e., 10, 50, and 100-year events) in the Cambodian floodplain of the Lower Mekong.
- The *future development of dam* for the whole Mekong Basin would reduce the river flow and flood inundation, flood damage in the Cambodian floodplain.
- The *climate change effect* would be more significant than *dam reduction* lead to increase the flood inundation magnitude in the future projected periods.
- Appropriate activities and countermeasures should be prepared in for response and adaptation to reduce the possibility of these severe extreme flood events.

Floating Village, Tonle Sap Lake, Cambodia