THA 2022 International Conference on

Moving Towards a Sustainable Water and Climate Change Management After COVID-19

Relationship between Soil Moisture Content and Salinity Degree in the Salt-Affected Soils in Khon Kaen, Northeast Thailand

SUPRANEE SRITUMBOON

Land Development Department Regional Office 5,

Land Development Department, Khon Kaen, Thailand

ssritumboon@yahoo.com

Introduction

Salt-affected soil is an excessive accumulation of salts, includes various compounds of sodium, potassium, calcium, magnesium, sulfates, chlorides, etc.

Salt-affected soil types

Classification	Electrical conductivity (dS m ⁻¹) ^a	Soil pH	Sodium adsorption ratio (SAR) ^b	Exchangeable sodium percentage (ESP)	Soil physical condition
Normal	<4.0	<13	6.5-7.51	<15 below	Good
Saline	>4.0	<8.5	<13	<15	Normal to poor
Sodic	<4.0	>8.5	>13	>15	Very poor
Saline-sodic	>4.0	<8.5	>13	>15	Poor

^adS m^{-1} = mmho cm⁻¹.

https://www.researchgate.net/publication/308675539_Halotolerant_Plant_Growth_Promoting_Bacteria_Mediated_Salinity_Str ess_Amelioration_in_Plants/figures?lo=1&utm_source=google&utm_medium=organic

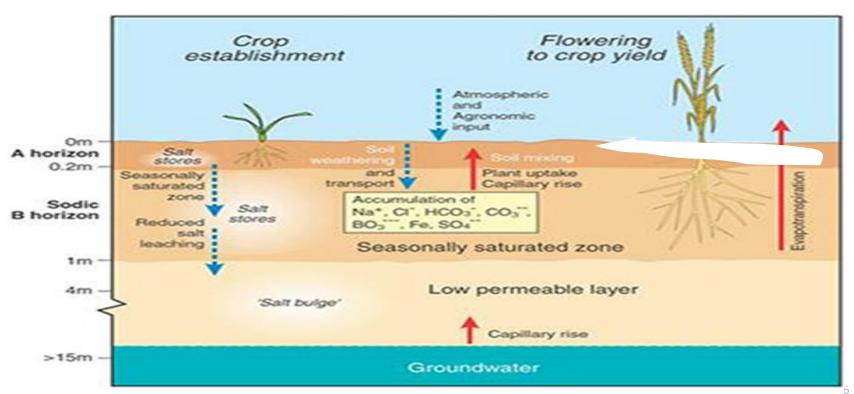
Salinity Class	Non-saline	Slightly saline	Moderately saline	Severely saline	Very severely saline
ECe (dS/m)	< 2	2- 4	4 - 8	8 - 16	>16

The spatial distribution of salt-affected soil with ECe>2 dS/m, ESP>15% and pH > 8.2 at two depth intervals (0-30 cm and 30-100 cm)

>> 85% of salt-affected top soils are saline, 10% are sodic and 5% are salinesodic

>>62% of salt-affected sub soils are saline, 24% are sodic and 14% are saline-sodic.

https://www.fao.org/global-soil-partnership/gsasmap/en/

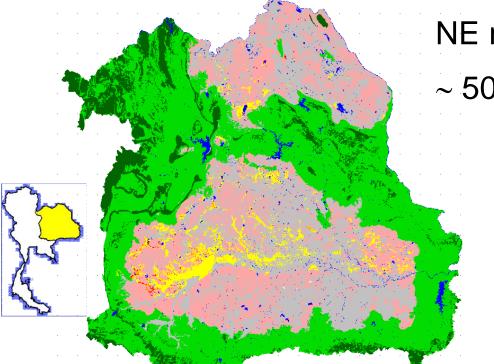

Salt-affected soil is influenced by factors

>>primary factors

-- climate, precipitation, and parent material

>>secondary factors

-- manmade, climate change, landform, and rainfall pattern



https://oxfordre.com/environmentalscience/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-65

Impact of a salt-affected soil

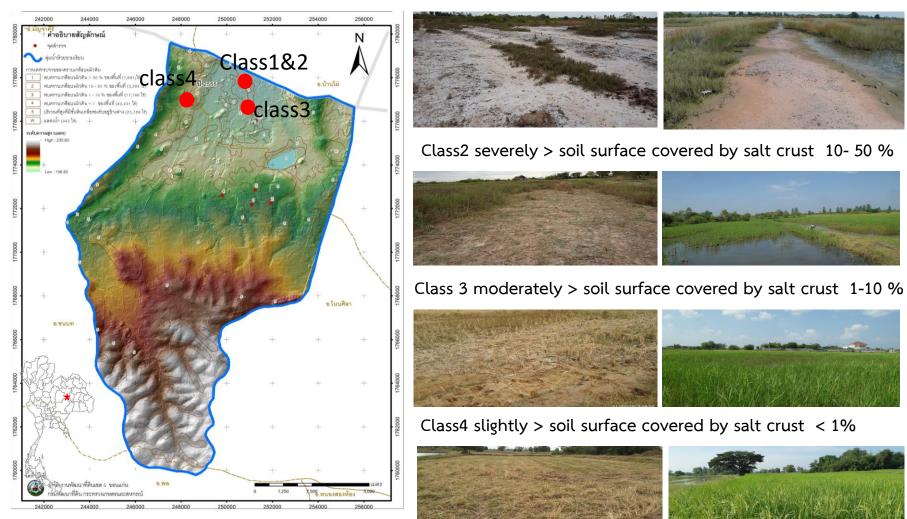
- Decrease a productivity land
- Decrease soil fertility, soil biodiversity
- Decrease crop yield
- Water pollution
- Increase crop nutrient toxic

Inland salt-affected soils in NE Thailand

NE region \rightarrow 17 M ha ~ 50% \rightarrow under salt effects

LDD's Classification scheme (classified based mainly on % salt crust in the middle of the dry season)

Class	Description	
1	salt crust > 50% of the soil surface	Severely
2	salt crust > 10-50%	53,000 ha
3	salt crust > 1-10%	Moderately 600,000 ha
4	salt crust > 0-1%	Slightly
5	no salt crust but underlain with rock salt	4.3 M ha
6	salt free areas	Potentially 3 M ha
Others	e.g., settlement, and water body etc.	


Objectives

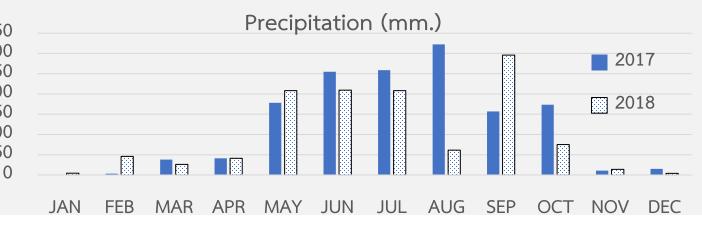
 \blacktriangleright study on the variation of a salt-affected soil properties as ECe and SAR

explanation the relationship between soil moisture content and salinity degree in the salt-affected soil.

Study Site

Class1 very severely > soil surface covered by salt crust > 50 %

Land Development Department (2004)


Study Site (cont.)

Annual precipitation is 1,451.97 mm in 2017

and 1,192.97 mm and 2018

Average rainfall in Khon Kean \approx 1,200 mm

 (METEOROLOGY STATION, KHON KAEN PROVINCE: 2003 - 2015)

Methodology

Taking soil samples soil samples were monthly taken at 0-30 cm depth in 4 classes of a salt crust on soil surface based on map percentage of salt crust on soil surface

class	Soil texture	Number of soil
		samples
1: very severely salinity	Sandy loam, loam, silt loam	240
2: severely salinity	Loam, sandy loam	360
3: moderately salinity	Sandy loam, clay loam, sandy clay	360
	loam	
4: slightly salinity	Sandy loam, loamy sand, clay loam,	240
	sandy clay loam	

Methodology (cont.)

Analyze of soil samples

- >> Electrical conductivity of the saturated extract (ECe)
- >> Sodium Adsorption Ratio (SAR)
- >> Soil Moisture Content (SMC), Permanent Wilting Point (PWP),

and Field Capacity (FC)

Methodology (cont.)

Statistical analysis

>> mean, minimum, and maximum

>>coefficient of variation (CV)were determined for each class separately

(Wilding, L.P., 1985)

little variability >>CV <15%

moderate variability >> CV =15-35 %

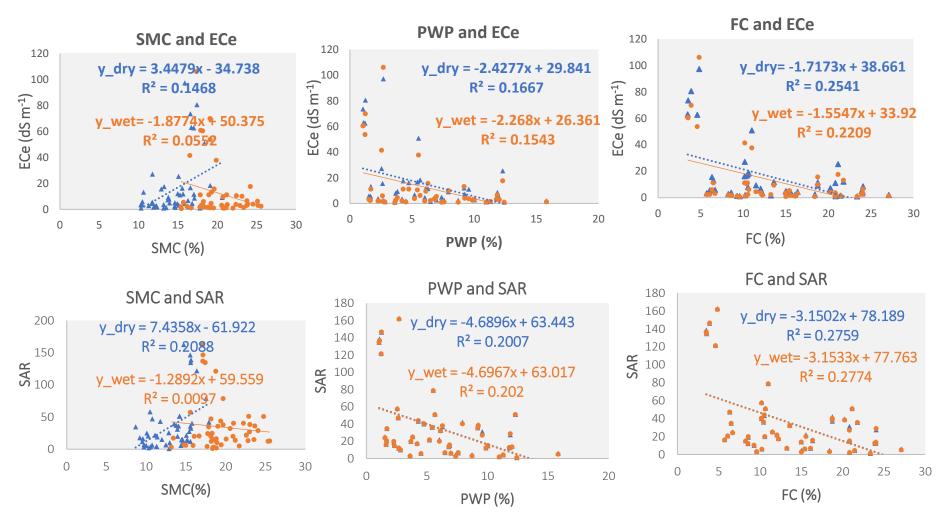
high variability >> CV >35%

>> linear regression

Result and Discussion

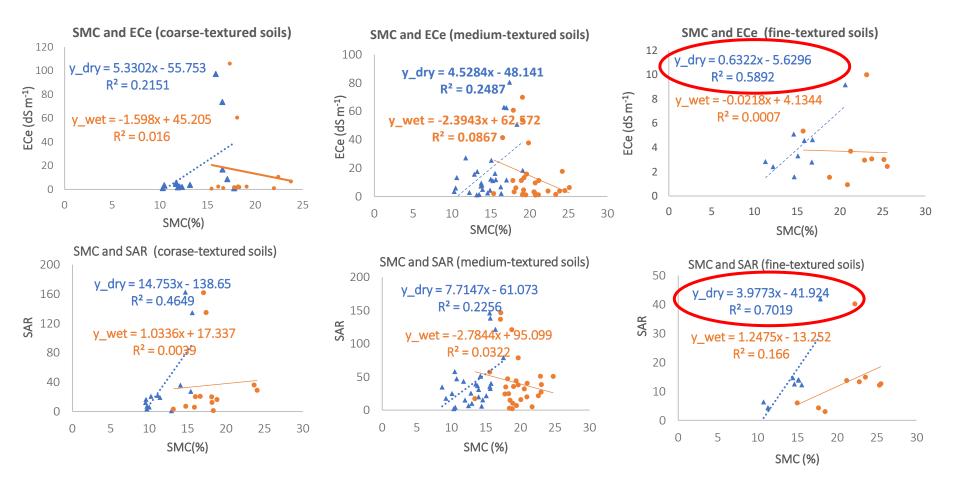
Variation of ECe and SAR in a dry season

Dry										
value		cla	class1		class2		class3		ss4	
		2017	2018	2017	2018	2017	2018	2017	2018	
ECe	Mir	n 6.48	5.57	1.00	0.75	0.92	1.07	0.33	0.33	
(dS m⁻¹) Ma	x 121.05	165.50	36.41	53.90		21.10 2.08	4.54 0.46	7.04 0.38	
SAR	Mir	n 18.66	16.64	8.39	3.76					
	Ma	x 196.31	244.57	68.41	103.22	80.98	80.16	10.74	28.47	
TYPES	TYPES		saline-	normal,	normal,	normal,	normal,	normal,	normal,	
	sodic sodic salin		saline,	saline,	saline,	saline,	saline,	saline,		
				saline-	saline-	saline-	saline-	saline-	saline-	
				sodic,	sodic,	sodic,	sodic,	sodic,	sodic,	
				sodic	sodic	sodic	sodic	sodic	sodic	


Variation of ECe and SAR in a wet season

	Wet									
	value		class1		class2		class3		class4	
			2017	2018	2017	2018	2017	2018	2017	2018
	ECe	Min	3.56	3.17	0.58	0.69	0.54	0.50	0.30	0.23
	(dS m ⁻¹)	Max	136.35	157.00	60.95	113.80	35.80	25.73	10.74	28.47
	SAR Min Max		11.72	10.42	5.28	3.29	0.48	1.14	0.24	0.25
			195.09	289.09	99.95	169.92	78.65	77.40	14.78	47.26
	TYPES		slightly	slightly	normal,	normal,	normal,	normal	normal,	Normal,
			saline,	saline,	saline,	saline,	saline,	, saline,	saline,	saline,
			saline-	saline-	saline-	saline-	saline-	saline-	saline-	saline-
			sodic	sodic	sodic,	sodic,	sodic,	sodic,	sodic,	sodic,
					sodic	sodic	sodic	sodic	sodic	sodic

Variation of ECe and SAR


	Dry									
	value		class1		class2		class3		class4	
			2017	2018	2017	2018	2017	2018	2017	2018
	ECe Mean		41.73	67.94	8.74	12.43	4.90	6.11	1.10	1.31
	(dS m⁻¹)	CV(%)	65.24	78.16	78.81	105.99	74.39	72.85	66.09	103.95
	SAR	Mean	81.17	108.51	28.19	29.39	21.73	19.29	3.98	3.82
		CV(%)	51.99	67.92	51.05	79.15	79.93	76.23	69.76	126.76
					Wet					
	val	ue	class1		cla	ss2	cla	ss3	class4	
			2017	2018	2017	2018	2017	2018	2017	2018
	ECe	Mean	42.14	59.61	7.30	11.02	3.83	5.36	3.98	3.82
	(dS m⁻¹)	CV(%)	84.31	83.44	168.29	165.00	117.21	97.44	69.76	126.76
	SAR	Mean	81.69	100.43	21.53	27.48	16.77	18.71	3.37	5.76
		CV(%)	61.57	73.22	90.31	96.93	94.58	73.69	96.18	157.92

Relation ECe and SAR with soil moisture content

18

Relation ECe and SAR with soil moisture content under different soil texture

Summary

- The variation of ECe and SAR is high (C.V >35%) at 0-30 cm. soil depth.
- ECe and SAR are higher variability in wet season than dry season.
- ECe and SAR is positive relation to SMC in a dry season but it showed a negative trend with SMC in a wet season.
- Soil moisture content at PWP and FC showed a negative correlation with ECe and SAR in both a wet season and a dry season.
- It is a positive correlation between a salinity and soil moisture content under different soil texture in a dry season, especially, in a fine-textured soil. While, in a wet season was not clarified for both salinity as ECe and SAR.

Future Work

- The long-term continuing study will provide a better understanding of salt variation in the soil profile.
- It is significant to understand changes and spatial responses, climate, and the water cycle.
- The irrigation research will be more study to expose how much of suit water for crop and leaching salt from the root zone and how to manage a salt-affected soil under the climate change situation.

This research is financially supported by the JICA/JST, Japan under the Advancing Co-Design of integrated strategies with Adaptation to climate change in Thailand (ADAP-T) project.

Thank you

ขอบคุณค่ะ