SENSITIVITY ANALYSIS OF THE RUNOFF IN THE LAND SURFACE MODELS FORCED BY THE OUTPUT OF MRI-AGCM 3.2 CLIMATE MODEL

Aulia Febianda Anwar Tinumbang Kazuaki Yorozu Yasuto Tachikawa Yutaka Ichikawa

Kyoto University Graduate School of Engineering

Introduction

Background

- **Runoff** output from General Circulation Models/Regional Climate Models (GCMs/RCMs) have been widely used to project future change of river discharge.
- However, the simulated flow by **runoff** from GCMs/RCMs is **biased**.
- The **bias** might come from precipitation bias and/or **ROF** bias.
- The ROF is estimated by Land Surface Model (LSM) embedded in the climate models.
- To improve the runoff accuracy, it is necessary to understand the sources of runoff bias in the LSM.

Purpose

To evaluate simulated discharge forced by **runoff** from **LSMs** and investigate the sources of **runoff** uncertainty in the **LSMs**.

Methodology

- In this study, **ROF** output from two LSMs is analyzed.
 - Simple Biosphere including Urban Canopy (SiBUC) (Tanaka, 2005).
 - Meteorological Research Institute Simple Biosphere (MRI-SiB) (Hirai *et al.*, 2007)
- Both LSMs have been developed based on Simple Biosphere (SiB) (Sellers *et al.*, 1986).
- **Total ROF** from both LSMs are utilized as input for 1K-FRM to simulate the river discharge.

Total ROF = surface ROF (Qs) + subsurface ROF (Qsb)

Forcing data and study area

MRI-AGCM 3.2S atmospheric data was used as forcing for both LSMs. Study area is upper part of Ping River Basin (tributaries of Chao Phraya River Basin) in Thailand.

Simulation period: 1979-2003, spin-up period: 1979-1983, analysis period: 1984-2003

1. Evaluation of discharge simulated by LSMs.

^{2.} Investigation of runoff generation schemes in LSMs.

Framework of this study

- 1. Evaluation of discharge simulated by LSMs.
 - Comparison of simulated rainfall with observed rainfall
 - Analysis of runoff characteristics by LSMs
 - Comparison of streamflow estimated by LSMs with observed river discharge.
- 2. Investigation of runoff generation schemes in LSMs.
 - Sensitivity analysis of the impacts of model settings on runoff characteristics.

Different settings between SiBUC and MRI-SiB

Settings	SiBUC	MRI-SiB	} →
(a) Soil parameters			
$z_i(m)$	~ 12.5	~ 3.5	$P \qquad \qquad$
<i>K_s</i> (m s ⁻¹)	8.35×10^{-6}	1.76×10^{-4}	
$\varphi_s(m)$	-0.63	-0.086	M _c
(b) Model structures			E _s Po
Direct infiltration into deeper soil layer " P_2 "	-	incorporated	$P_{\alpha} M_{\alpha} P_{2} P_{1}$
Soil-water flow equation	$Q_{i,i+1} = K \left[\frac{\partial \varphi}{\partial z} + 1 \right]$	$Q_{i,i+1} = K\left[\frac{\partial\varphi}{\partial z}\right]$	$Q_{1,2}$ W_1 W_2 $E_{dc,1}$
Subsurface ROF estimation	$Q_3 = \sin \phi_s K_s W_3^{2B+3}$	$Q_3 = \sin\theta_s K_s W_3^{2B+3} \left[1 + \frac{\varphi_2 - \varphi_3}{z_3} \right]$	W ₃
(c) Numerical scheme for updating soil moisture	explicit-midpoint method	semi-implicit method	Q ₃
	1	1	

Variables that are treated differently in both LSMs

 $Q_{i,i+1}$: flow between soil layer, φ_i : matric potential, W_i : soil moisture, K_i : hydraulic conductivity, z_i : soil depth

Experimental designs

2. Investigation of runoff generation schemes in LSMs.

Framework of this study

- 1. Evaluation of discharge simulated by LSMs.
 - Comparison of simulated rainfall with observed rainfall
 - Analysis of runoff characteristics by LSMs
 - Comparison of streamflow estimated by LSMs with observed river discharge.
- 2. Investigation of runoff generation schemes in LSMs.
 - Sensitivity analysis of the impacts of model settings on runoff characteristics.

Evaluation of climatological mean of monthly rainfall

- Distinct distribution of observed rainfall during wet and dry seasons could be well captured by simulated rainfall by GCM.
- The mean annual rainfall by GCM was close to the observation.

COMPARISON OF WATER BUDGET

Water budget components	LSMs		
(mm year)	SiBUC	MRI-SiB	
Evapotranspiration (ET)	976	999	
Runoff (ROF)	194	146	
Surface runoff (Qs)	58	3	
Subsurface runoff (Qsb)	136	143	
Change of soil moisture (deISM)	-17	1	

- MRI-SiB tends to estimate higher evapotranspiration and lower runoff than SiBUC.
- SiBUC tends to generate higher surface runoff than MRI-SiB.
- Subsurface runoff is the dominant runoff components in MRI-SiB.

Characteristics of daily discharge using runoff generated by LSMs

- Time series of streamflow by **SiBUC** shows similar response to the rainfall.
- Estimated discharge by MRI-SiB is mainly affected by catchment wetness, particularly in the early rainy season.

Evaluation of streamflow simulated by runoff from LSMs

• Both LSMs could reproduce seasonal changes of observed inflow in this basin.

- SiBUC tends to have a better reproducibility of observed inflow.
- Peak discharge by MRI-SiB is closer to the peak observation.

1. Evaluation of discharge simulated by LSMs.

Framework of this study

- 1. Evaluation of discharge simulated by LSMs.
 - Comparison of simulated rainfall with observed rainfall
 - Analysis of runoff characteristics by LSMs
 - Comparison of streamflow estimated by LSMs with observed river discharge.

- 2. Investigation of runoff generation schemes in LSMs.
 - Sensitivity analysis of the impacts of model settings on runoff characteristics.

INVESTIGATION OF RUNOFF GENERATION SCHEMES in LSMs

- Each setting has shown some impacts on runoff characteristics.
- By adopting MRI-SiB parameters, model structures, and numerical scheme for updating soil moisture in SiBUC, MRI-SiB's runoff characteristics could be reproduced by SiBUC.

Characteristics of the estimated daily discharge

- The simulated discharge by experiment
 6, by adopting MRI-SiB parameters,
 model structures, and numerical
 scheme for updating soil moisture in
 SiBUC, shows a similar temporal pattern of MRI-SiB.
- The analysis from this study has shown some insights to identify potential sources of runoff bias in the land surface models.

Conclusions and future work

- This study aimed to evaluate simulated streamflow forced by runoff from LSMs and investigate the sources of runoff uncertainty in the LSMs.
- From runoff analysis, both LSM showed different runoff characteristics: higher surface runoff in SiBUC and dominant subsurface runoff component in MRI-SiB.
- The different runoff estimation by each LSM has impacts on the simulated streamflow.
- To determine the reasons for such differences, runoff generation schemes in both LSMs were analyzed in detail.
- This study identified different settings in SiBUC and MRI-SiB that mainly affected the runoff generation: soil parameters, model structures, and time integration methods.
- The analysis from this study has shown some insights to identify potential sources of runoff uncertainty in the land surface models.
- Future work should evaluate and improve the performance of each LSM for reproducing the observed discharge.