

Potential impact of severe weather on hydraulic performance of a field-scale wastewater treatment plant: A case study of baffle-based pond

Saifhon Tomkratoke, Teppatat Pantuphag (Speaker), Sirod Sirisup

Data-driven Simulation and Systems Research Team National Electronics and Computer Technology Center, Thailand.

Presentation Structure

- introduction
- Objective
- Methodology
- Result
- Conclusion

Introduction

- Wastewater treatment schemes are essential due to current water pollution situation in Thailand.
- Waste Stabilization Pond with baffles (WSPB) can be one of the possible strategies.
- WSPB is potentially disturbed by the external factors such as a heavy rainfalls, stormwater, causing the overflow into the waste water treatment plant.

Objective

- To Understand the hydraulic behaviors in operating condition and an extreme event.
- To Investigate the development scheme of WSPB and applying to design schemes of wastewater treatment management.

- Operating condition
 - Select number of baffle
- Stormwater condition
 - Study effect of spillway
 - Study effect of filter
 - Flooding situation
 - Improvement scheme
 - Porous media + 2 elevated Baffles

Methodology

- Operating condition
 - Select number of baffle
- Stormwater condition
 - Study effect of spillway
 - Study effect of filter
 - Flooding situation
 - Improvement scheme
 - Porous media + 2 elevated Baffles

- Operating condition
 - Select number of baffle
- Stormwater condition
 - Study effect of spillway
 - Study effect of filter
 - Flooding situation
 - Improvement scheme
 - Porous media + 2 elevated Baffles

Mixing sizes of Obstacles

7

Methodology

- Operating condition
 - Select number of baffle
- Stormwater condition
 - Study effect of spillway
 - Study effect of filter
 - Flooding situation
 - Improvement scheme
 - Porous media + 2 elevated Baffles

- Operating condition
 - Select number of baffle
- Stormwater condition
 - Study effect of spillway
 - Study effect of filter
 - Flooding situation
 - Improvement scheme
 - Porous media + 2 elevated Baffles

Methodology

· Computational Detail

- A synthetic flow rate is setup to be upstream condition.
- The outlet is prescribed with the free surface (Water level)
- Open software "SCHISM" (Ref. www.schism.wiki)

Operating condition: Select number of baffle

Result

Stormwater condition: effect of spillway

Stormwater condition: effect of Porous media filter

13

Result

Stormwater condition: Flooding situation

Stormwater condition: Improvement scheme

Conclusion

- The number of baffles and inlet size influence eddy cell's development in WSP.
- The best result is 8 baffles with the inlet(spillway) size of 2.5 square meters.
- Porous-media-like filter structures could improve overall performance.
- Numerical simulation helps improve design scheme of wastewater treatment plants/infrastructures.

THANK YOU

17

Result

19

Result

Operating condition

160

HRT = 5 DAYS

Computational Detail

- A synthetic flowrate is setup to be upstream condition.
- The outlet is prescribed with the free surface (Water level)
- Open software "SCHISM" (Ref. www.schism.wiki)

21

Methodology

- Design Waste Stabilization ponds by testing effect of baffle and observing hydraulic efficiency.
 - Pond's size: L1/L2 = 1/2.6 = 5/13
 - Number of baffle: 0 2 and 8
- Study a porous media behavior by Mixing Obstacles which the diameters 0.15 and 0.5 meters
- Study effect of stormwater by setting the synthetic flow to be inlet

Design Geometry

- Create a initial pond
- Select number of baffles (2 8)
- Study effect of spillway
- Study effect of stormwater
- Improvement scheme
 - Elevated Baffles

23

Methodology

- Operating condition
 - Select number of baffle
- Stormwater condition
 - Study effect of spillway
 - Study effect of filter
 - Flooding situation
 - Improvement scheme

Forcing an extreme event

- Create initial pond
- Select number of baffles (2 8)
- Study effect of spillway
- Stormwater Characteristic
- Improved WSP
 - Filter
 - Elevated Baffles

25

Stormwate

Stormwate

Methodology

Forcing data

- Create initial pond
- Select number of baffles (2 8)
- Study effect of spillway
- Stormwater Characteristic
- Improved WSP
 - Filter
 - Elevated Baffles

- Operating condition
 - Select number of baffle

• Stormwater condition

- Study effect of spillway
- Study effect of filter
- Flooding situation
- Improvement scheme

