

THE CHARACTERISTICS OF SEDIMENT TRANSPORT IN THE UPPER AND MIDDLE YOM RIVER, THAILAND

Matharit Namsai 1, Ruetaitip Mama 2, Suphakorn Sirapojanakul³, Seree Chanyotha¹, Nathamon Phanomphongphaisarn¹, and Butsawan Bidorn^{1*}

¹ Chulalongkorn University, Bangkok, Thailand ² Royal Irrigation Department, Bangkok, Thailand ³ Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand

24 JAN 2019

THA 2019 International Conference on Water Management and Climate Change towards Asia's Water-Energy-Food Nexus and SDGS

www.eng.chula.ac.th

Outline

- Introduction
- Objectives
- Study Area
- Methods
- **Results and Discussion**
- Conclusions

Introduction

- Knowledge of sediment transport is typically required in water resources development projects.
- However, sediment data (suspended and bed loads) are limited.
- Suspended sediment load is generally sampled at hydrological stations on regular basis, but bed load is rare.
- Bed load data are commonly estimated by several methods such as Maddock and Borland, Lane and Borland, Einstein's function, and bed-to-suspended load ratio from field observation.

3

Introduction

Objectives

Study Area

Methods

Results and Discussion

Conclusions

www.eng.chula.ac.th

Introduction

Chao Phraya River basin

- The Yom River is one of the major tributaries of the Chao Phraya River.
- The flood and drought disasters have frequently occurred in the lower Yom River basin.

- Several water management projects were planned to develop in the upper and middle Yom River basins.
- Therefore, sediment characteristics and sediment processes data are needed.

4

Introduction

Objectives

Study Area

Methods

Results and Discussion

Conclusions

Introduction

- Few previous studies reported that bed loads in the lower Yom River basin ranged 0-5 percent of suspended load.
- Meanwhile, the Royal Irrigation Department (RID) suggested using bed load of 35-70 percent of suspended load to design the large dam in the upper Yom River basin.
- RID generally estimates bed load as 30 percent of suspended load for each basin in Thailand.
- However, previous studies showed that bed-to-suspended load ratios of several rivers varied 0-200 percent.
- Consequently, bed loads of the Yom River in the mountainous area (upper and middle basin) may be different from previous studies.

Introduction

Objectives

Study Area

Methods

Results and Discussion

Conclusions

3

www.eng.chula.ac.th

Objectives

- ☐ To study sediment transport characteristics along the mountainous river reach located in the upper and middle Yom River basin.
- ☐ To evaluate annual total sediment loads transported along the mountainous river reach.

Introduction **Objectives** Study Area Methods Results and Discussion Conclusions

Study Area

Yom River Basin

- The upper and middle basins cover 12,000 km² of the mountainous area.
- River slope varies from 1:700 to 1:2,300.
- The upper basin is the drainage area above the Mae Yom Barrage.
- The lower Yom River basin is a floodplain area.

www.eng.chula.ac.th

Methods

Results and Discussion

Conclusions

Methods

To study the sediment transport characteristics

- River surveys were carried out in 2018 at 4 observation sites (XY.1, XY.2, XY.3, and XY.4).
- ❖ These sites were located near the RID's hydrological stations (Y.20, Y.1C, Y.37, and Y.14).

CHULA ENGINEERING

Observation sites and RID stations

Methods

Field observation in 2018

River Flow and Cross Section were measured using the Sontek River

Surveyor M9.

Suspended sediment loads were collected using the depth-integrated

sediment sampler US DH-49.

9

Introduction

Objectives

Study Area

Methods

Results and Discussion

Conclusions

www.eng.chula.ac.th

Methods

Field observation in 2018

Bed loads were sampled using the Helley-Smith sampler.

Bed materials were sampled using the Van Veen grab sampler.

10

Introduction

Objectives

Study Area

Methods

Results and Discussion

Conclusions

Methods

To evaluate the annual total sediment loads

- ☐ Historical river flow and suspended sediment data of 4 RID's stations were collected from RID.
- □ Suspended sediment rating curves were conducted for each station
- ☐ The suspended loads were estimated from sediment rating curves for each station.
- ☐ The bed loads were estimated using bed-to-suspended sediment load ratio analyzed from field data in 2018.
- Mann-Kendall (MK) test was used for testing statistical trends of long-term annual sediment loads.

11

Introduction

Objectives

Study Area

Methods

Results and Discussion

Conclusions

www.eng.chula.ac.th

Results and Discussion

River Flow and Sediment Transport Characteristics in 2018

Table: River flow and sediment transport characteristics data at observation site in 2018

Sites	Date	Flow area, A (m²)	Mean velocity, V (m/s)	Oischarge, Qw (m³/s)	Suspended load, Q ₅ (t/d)	Bed load, Q _b (t/d)	Q_b/Q_s	Bed load size, d ₅₀ (mm)	Bed material size, d ₅₀ (mm)
Dry season				i					
XY.1	27-Mar-2018	80	0.029	2.3	4.2	~0	0	-	0.70
XY.2	27-Mar-2018	28	0.125	3.5	9.5	~0	0	-	0.77
XY.3	28-Mar-2018	81	0.067	5.4	4.9	~0	0	-	1.67
XY.4	28-Mar-2018	40_	iver flow	6.0	4.9	~0	0	N 4 - 4 1	1.75
Wet season		R	iver flow				Rea	Material	
XY.1	23-Jul-2018	274	0.850	232.8	11,469.8	66.7	0.006	0.80	0.96
XY.2	23-Jul-2018	259	0.918	237.7	6,592.0	4.0	0.001	0.19	0.77
XY.3	24-Jul-2018	296	0.889	263.2	5,424.4	55.8	0.010	1.65	1.67
XY.4	24-Jul-2018	293	0.937	274.6	8,425.2	23.4	0.003	0.90	0.92
lite.									

River flow

The river discharges tended to increase towards downstream.

Bed Material

- ightharpoonup Median grain size (d_{50}) ranged from 0.70 to 1.75 mm.
- The mountainous river reach was characterized by coarse sand to very coarse sand.

Introduction Objectives Study Area Methods **Results and Discussion** Conclusions

CHULA ENGINEERING

Results and Discussion

Suspended Sediment Load

- The suspended sediment loads (Qs) observed during the dry season slightly increased towards downstream.
- For the wet season, the suspended sediment transport rate significantly declined from XY.1 to XY.3 and then grew at XY.4.
- The highest rate was observed at XY.1 (11,470 t/d).
- More than 99 percent of Yom River's sediment was transported in suspension form.

13

Introduction

Objectives

Study Area

Methods

Results and Discussion

Conclusions

www.eng.chula.ac.th

Results and Discussion

Bed Load

- ➤ The bed sediment transport (Q_b) along the river was under detectable during the dry season.
- During the wet season, the bed loads along the river varied between 4 and 67 t/d with mean flow velocity of more than 0.8 m/s.
- The bed loads tended to decrease towards downstream.
- However, the bed load observed at the XY.2 was significant low possibly as a result of scouring protection near the observation site.

CHULA ENGINEERING

Results and Discussion

Conclusions

Results and Discussion

Historical River Flow and Sediment Transport Characteristics

www.eng.chula.ac.th

Results and Discussion

Sediment Loads of the River in Mountainous River Basin

- Total sediment load comprises of annual suspended sediment load and bed load.
- Because bed loads were less than 1 percent of the total sediment loads.
- Therefore, total sediment loads could be roughly estimated from suspended sediment load data.

Introduction Objectives Study Area Methods **Results and Discussion** Conclusions

www.eng.chula.ac.th

Conclusions

- ☐ The Yom River reach located in the mountainous area was a sandy bed river and characterized by coarse sand to very coarse sand.
- Sediment along the mountain river reach mainly transported as suspended sediment load.
- ☐ The daily suspended sediment loads along the river strongly correlated with the daily river discharges.
- ☐ Suspended sediment rating curves can be used for estimating daily total sediment discharges.
- ☐ Results from river observations in this study combined with the previous studies suggested that bed load transport was responsible for 1-5 percent of the total sediment load.

Introduction Objectives Study Area Methods Results and Discussion **Conclusions**

Conclusions

- □ The long-term sediment transport of the Upper Yom River was 0.6 Mt per year. Meanwhile, the Middle Yom River was 0.8 Mt per year.
- No significant trends of long-term annual sediment load had found at any section along the Yom River.
- ☐ The long-term sediment discharges tended to increase towards downstream.

19

Introduction

Objectives

Study Area

Methods

Results and Discussion

Conclusions

Thank you for your attention