

Impact of Water Losses on Pressure and Energy in MWA Trunk Main Network, Thailand

Adichai Pornprommin*,
Surachai Lipiwattanakarn and Sutthisak Lapprasert

4 Water Treatment Plants (WTP) with 191-km transmission system

- D = 500-1,800 mm
- 1,700 km
- 4 WTPs
- 11 distribution pumping stations
- 6 valve chambers

Simulation by EPANET software

5

Energy Balance Concept

No water loss (%WL = 0)

$$E_{input} = E_{deliver} + E_{friction}$$

$$\rho gQh_{input} = \rho gQh_{deliver} + \rho gQh_{f0}$$

%WL = 10% with a leak

$$E_{input} = E_{deliver} + E_{friction} + E_{leak}$$

$$1.1 \rho g Q h_{input} = \rho g Q h_{10\%} + \sum \rho g Q h_f + 0.1 \rho g Q h_{mid}$$

Energy Balance Metric for MWA Trunk main network

$\frac{E_{\text{Output}}}{\text{Output energy}} \qquad \frac{E_{\text{L,DM}}}{\text{Outgoing energy through water loss in DMAs}}$ $\frac{E_{\text{L,T}}}{\text{Outgoing energy through water loss on trunk mains}}$ $\frac{E_{\text{L,T}}}{E_{\text{F,DM}}}$ Friction at the DM feed lines $\frac{E_{\text{E,DM}}}{E_{\text{E,T}}}$ Friction on the trunk mains $\frac{E_{\text{E,T}}}{E_{\text{E,T}}}$			Energy delivered to DMs	
Outgoing energy through water loss on trunk mains $\frac{E_{Input}}{Input\ energy}$ $\frac{E_{F,DM}}{Friction\ at\ the\ DM\ feed\ lines}$ $\frac{E_{Dissipated}}{Dissipated\ energy}$ Friction on the trunk mains		Output energy E _{Dissipated}		
E _{F,DM} Friction at the DM feed lines E _{F,T} E _{Dissipated} Dissipated energy Friction on the trunk mains				
Dissipated Friction on the trunk mains Dissipated energy	mpar energy			
E _{FV}				
Friction at throttled valves			E _{F,V} Friction at throttled valves	

25.8% water losses in March 2013

Unit: MWatt-hr/day (%)

	E _{Output} Output energy 148 (53.4%)	E _{U,DM} Energy delivered to DMs 107 (38.6%)
E _{Input} Input energy		E _{L,DM} Outgoing energy through water loss in DMAs 31 (11.2%)
		$$E_{\text{L,T}}$$ Outgoing energy through water loss on trunk mains $$10\ (3.6\%)$$
277 (100%)		E _{F,DM} Friction at the DM feed lines 52 (18.8%)
	E _{Dissipated} Dissipated energy 129 (46.6%)	E _{F,T} Friction on the trunk mains 64 (23.1%)
		E _{F,V} Friction at throttled valves 13 (4.7%)
		10

MWA Targets in 2021

- To reduce %WL to 19% and
- raise the average pressure to 10.8 m.

11

Scenario

Leakage is pressure-driven flow and the main component of water losses. Thus,

$$Q_{leak} = C_L P^{N_1}$$

Scenario	Scenario Explanation	Throttling valves	Water loss parameters
0	Base model from March 2013	Yes	C_L
1	Remove all throttled valves	No	C_L
2	1st step of leak reduction	No	$0.8*C_L$
3	2nd step of leak reduction	No	0.6*C _L
4	3rd step of leak reduction	No	$0.4*C_L$

Results

Scenario	Volume of water losses, WL (MCM/day)	Percentage of water loses, %WL (%)	Average Pressure (m)	Range of Pressure (m)	Input Energy, E _{input} (MW-hr/day)
0	1.422	27.45	8.66	4.25 - 10.70	270
1	1.526	28.89	9.24	4.40 - 11.73	289
2	1.295	25.63	9.74	4.55 - 12.49	277
3	1.036	21.61 1 19%	10.33 10.7 m	4.72 - 13.39	264
4	0.741	16.48	11.02	4.92 - 14.49	249

Thus, if the MWA could reduce %WL to 19% as its target, the pressure would raise to 10.7 m very close to the target (10.8 m) by itself.

13

Conclusion

- If MWA removes all throttled valves and can find and fix leaks and reduce %WL to 19% as its target, the pressure will raise to its pressure target (10.8 m) without increasing its pressure at the sources.
- MWA will save water of 0.434 MCM/day.
- MWA will save electricity around 23 MW-h/day (excluding production & transmission).
- The electricity reduction is worth ~30 mil.Baht/year (900,000 USD/year).

Thank you

0% water losses

Unit: MWatt-hr/day (%)

$\frac{E_{\text{Output}}}{\text{Output energy}} \\ 137 \text{ (66.2\%)} \\ \\ \frac{E_{\text{Input}}}{\text{Input energy}} \\ 207 \text{ (100\%)} \\ \\ \frac{E_{\text{Input}}}{\text{E}_{\text{Input}}} \\ \\ \text{Input energy} \\ 207 \text{ (100\%)} \\ \\ \\ \frac{E_{\text{Dissipated}}}{\text{Dissipated energy}} \\ \\ \frac{E_{\text{Dissipated}}}{\text{To (33.8\%)}} \\ \\ \frac{E_{\text{Dissipated}}}{\text{E}_{\text{E,T}}} \\ \\ \text{Friction on the trunk mains} \\ \\ 37 \text{ (17.9\%)} \\ \\ \frac{E_{\text{E,U}}}{\text{E}_{\text{E,T}}} \\ \\ \text{Friction on the trunk mains} \\ \\ 37 \text{ (17.9\%)} \\ \\ \frac{E_{\text{E,V}}}{\text{E}_{\text{E,V}}}} \\ \\ \text{Friction on the trunk mains} \\ \\ \text{To (33.8\%)} \\ \\ \text{To (33.8\%)} \\ \\ \text{To (34.8\%)} \\ \\ \text{To (34.8\%)} \\ \\ \text{To (34.8\%)} \\ \\ \text{To (35.8\%)} \\ \\ To (35$			E _{U,DM} Energy delivered to DMs 137 (66.2%)
$E_{lnput} \\ lnput \ energy \\ \textbf{207 (100\%)} \\ \\ E_{lnput} \\ \textbf{207 (100\%)} \\ \\ E_{E_{F,DM}} \\ \textbf{Friction at the DM feed lines} \\ \textbf{25 (12.1\%)} \\ \\ E_{Dissipated} \\ \textbf{Dissipated energy} \\ \textbf{70 (33.8\%)} \\ \\ E_{E,V} \\ \\ \textbf{E}_{E,DM} \\ \textbf{Friction at the DM feed lines} \\ \textbf{25 (12.1\%)} \\ \\ E_{E,T} \\ \textbf{Friction on the trunk mains} \\ \textbf{37 (17.9\%)} \\ \\ E_{E,V} \\ \\ \textbf{E}_{E,V} \\ \\ \textbf{E}_{E,V$	Input energy 207 (100%)	Output energy	Outgoing energy through water loss in DMAs
Friction at the DM feed lines $ 25 \text{ (12.1\%)} $ $ E_{\text{Dissipated}} $ $ E_{\text{F,T}} $ $ \text{Dissipated energy} $ Friction on the trunk mains $ 70 \text{ (33.8\%)} $ $ 37 \text{ (17.9\%)} $ $ E_{\text{F,V}} $			Outgoing energy through water loss on trunk mains
Dissipated energy 70 (33.8%) Friction on the trunk mains 37 (17.9%)		Dissipated energy	Friction at the DM feed lines
			Friction on the trunk mains
Friction at throttled valves 8 (3.8%)			Friction at throttled valves