Flooding Monitoring and Flood Inundation Analysis using UAV

2019.01.23

Mikyoung Choi^a, Gunsang Lee^b, Kwansue Jung^c

a International Water Resources Research Institute, Chungnam National University
b Department of Cadastre and Civil Engineering, Vision college of Jeonju
c Department of Civil Engineering, Chungnam National University

01 Objectives

- The flooding monitoring using UAV have the significant advantages in terms of providing prompt flooding information or river conditions.
- It is necessary to establish processes such as flight plan, image processing, and application of images.
- This study suggests the methods of flooding monitoring and application to inundation analysis.

Construction of topography data using UAV

- 2 Ground control point (GCP) survey
- In order to match the coordinate system, GCP survey must be conducted. (The captured image using UAV: WGS84 UTM coordinates, Korea: GRS80 TM coordinates)

번호	X (East)	Y (North)	Elevation
I	201365.30	397081.54	10.90
2	200920.75	396790.45	11.00
3	200714.74	397096.84	5.09
4	201244.85	397492.12	4.51
5	201057.65	396414.61	7.26
6	201440.79	396736.70	10.74

5

Construction of topography data using UAV

- The UAV device for acquiring river terrain data was the eBee (SenseFly, Lausanne, Switzerland) was used.
- The flight plan was designed with eMotion software.
- Lateral and longitudinal overlaps were set to be 80% and 70%, respectively

Construction of topography data using UAV

- 4 Creation of an Orthomosaic and a DSM
- Image mosaic processing used Pix4D software.
- The orthomosaic and Digital Surface Model(DSM) data was created.

Image mosaic processing with Pix4D SW

DSM

Construction of topography data using UAV

- 5 Creation of River Terrain Data
 - Three-dimensional terrain data was created with virtual survey software using orthomosaic and DSM files.

0

04 Flooding monitoring

- Flooding monitoring in July 2, 2018
 - Inspire UAV and Sequoir sensor was used to monitor flooding conditions in July 2.

Flood Monitoring SEQUUL

지 점	돈산 ✔ 주 소 충청당도 논산시	대교통 논산대교		
조회기간	[2018 년 7 호텔 1 기월 1 시 20 분부터 2018 년 7	∨ ≅3 ∨ ≌	20 V A 20 V	분 까지
	Y축 설정 I 하단: 250 상단: 10.65 초기화 조	회 저장	CSV저장	닫 기
	거리(m) ("명점표고 : 1.96m)	07-02 11:50	3,62 647,6	4 5,78
	0 25 50 75 100 125 150 175 200 225 250	07-02 11:40	3.82 647.6	4 5.78
9.00 -	2018/07/03 20:20 12:00	07-02 11:30	3,82 647,6	4 5./8
	생각(8.4 m) -10.00	07-02 11:20	3,83 650,6	3 5.79
7.00	정보(6.5 m) - 9.00	U7-U2 T1:10	3.84 653.6	2 580
(E) 5.00 年 4.00 年 3.00	구의(5.0 m)	07-02 11:00	3,85 656,6	2 581
	7.00 ± 6.00 H	07-02 10:50	3,85 656,6	2 581
# 4.00 Ŧ 3.00	处以2.65 m) 5.00 里	07-02 10:40	3,86 659,6	3 582
2.00	4.00	07 02 10:00	0,000 000,0	4 500
1.00	3.00	07-02 10:20	3.88 665.6	5 584
0.00	-2.00	07-02 10:10	3,333 83,8	5 594
-1.00 -2.00	1.00	07-02 10:00	3,88 665,6	5 584
	888855588855588865558888888888888888888	07-02 09:50	3,99 668,6	7 595
	5 5 5 5 5 5 5 5 6 6 8 8 8 8 8 8 8 8 8 8	07-02 09:40	3,89 668,6	7 588
2H	1 : 하전 내 시설물(둔치, 자전거도로 등) 징수 수위	07-02 09:30	3,88 665,6	5 584
주의 : 홍수주의보 수위(계획홍수량의 50% 또는 계획홍수위 ~ 5년평균저수위의 60% 해당 수위)		07-02 09:20	3,88 665,6	5 584
	l : 홍수경보 수위(계획홍수량의 70% 또는 계획홍수위 - 5년평균저수위의 80% 해당 수위) l : 수위관측소가 위치한 단면의 계획홍수위(소수점 둘째자리 이하 버림)	07-02 09:10	3,87 662,6	4 583
<u>- 현</u> 기	수위	07-02 09:00	3.85 656.6	2 581

Flood Monitoring in Nonsan Area (2018.07.02 12:00

9

04 Flooding monitoring

- Flooding monitoring in July 2, 2018
 - $\bullet \quad \text{Coordinate match by PG-Steamer software} : \text{NIR image} \rightarrow \text{Three-dimensional terrain data} \\$

05 Flood inundation analysis

(FLUvial Modelling Engine) FLUMEN

05 Flood inundation analysis

- 2 FLUMEN (FLUvial Modelling Engine)
 - FLUMEN is based on the depth-averaged shallow water equations:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S$$

$$U = \begin{bmatrix} h \\ uh \\ vh \end{bmatrix}, \ F = \begin{bmatrix} uh \\ u^2h + \frac{1}{2}gh^2 \\ uvh \end{bmatrix}, \ G = \begin{bmatrix} vh \\ uvh \\ v^2h + \frac{1}{2}gh^2 \end{bmatrix}, \ S = \begin{bmatrix} 0 \\ gh(S_{ox} - S_{fx}) \\ gh(S_{oy} - S_{fy}) \end{bmatrix}$$

h: flow depth t: time g: acceleration of gravity ρ : density of fluid u,v: fluid's horizontal flow velocity, averaged across the vertical column S_o,S_f : bed slope and friction slope

12

05 Flood inundation analysis

- 3 Input data I
 - Topography Data
 - DSM data by UAV

- Generation of calculation mesh with Fluviz

13

05 Flood inundation analysis

- 3 Input data 2
 - Water condition data
 - Water level of outflow boundary, discharge of inflow boundary by HEC-RAS
 - Data was inputted during 12 hours

16 250 30 40 550 Satisf (ri)

Coefficient of roughness

- 1

Flood Monitoring in Nonsan Area (2018.07.02 12:00)

15

07 Conclusion

- Construction of river terrain data depended on the actual measurement (total station survey) or LiDAR measurement. This is take a lot of cost and times. In terms of this aspect, river terrain measurements using UAV have significant advantages.
- Also, the flood monitoring using UAV can provide prompt flood information.
- However, the images that are acquired using UAV exhibit a limitation, because UAV cannot obtain the accurate terrain with respect to the bottom of the water body.
- Although this study is just compared as plane shapes between flooding model and UAV-based on data, we will try to consider the flooding depth and the time of the rise and fall of water level.

