

International Conference on

Water Management and Climate Change towards Asia's Water-Energy-Food Nexus and SDGs

23-25 January 2019, Swissôtel Bangkok Ratchada, Thailand

Adaptation strategies for rainfed rice production under climate change scenarios in the Songkhram River Basin, Thailand

(TA144-1)

Siriwat Boonwichai & Sangam Shrestha

Water Engineering and Management (WEM) Asian Institute of Technology (AIT), Thailand

23rd January 2019

1

Contents

- > Introduction
 - ☐ Change in global temperature
 - ☐ Change in global rainfall
 - ☐ Impacts of climate change on global rice yield
 - ☐ Impacts of climate change on CWR, IWR, CWP
- ➤ Objectives
- ➤ Methodology
- > Results and discussion
 - ☐ Climate change in Songkhram River Basin, Thailand
 - ☐ Impacts of climate change on rice production
 - □ Adaptation strategies
- ➤ Conclusions
- > References

Land & Ocean Temperature Percentiles Jan–Jun 2018 NOAA's National Centers for Environmental Information Data Source: GHCN–M version 3.3.0 & ERSST version 4.0.0 Record Coldest Average Much Cooler than Average Average Average Average Average Average Average Record Average Average Average Average Average Average Average Record Average Record Re

- ➤ The combined land and ocean surface temperatures for the globe during January–June 2018 was 0.77°C above the 20th century (1961-2010) (NOAA, 2018).
- ➤ The hottest year on record was 2016, followed by 2015 and 2017 (NOAA, 2018).
- Future temperature is expected to rise up to 4.8°C by the end of 21st century (IPCC,2014)

- ➤ The precipitation in Thailand was near average of a base period (1961-1990) (NOAA, 2018).
- Future global precipitation may increase at high latitude & equator, but decrease at mid-latitude (IPCC, 2014).

Scenarios	A1F	A2A	A2B	A2C	B1A	B2A	B2B
Change in rice yield (%)	(-6) – (-10)	1 - 3	(-1) – 1	(-1) - 1	1 - 3	1 - 3	3 - 5

Introduction: Impacts of climate change on CWR, IWR, CWP, WA

- ➤ Climate change has negative impacts on agricultural sectors. Changes in the magnitude and patterns of temperature and rainfall can cause high vulnerability of crops.
- ➤ Temperature rise and change in rainfall patterns can significantly increase crop water requirement (CWR) (Fishcer et al., 2007).
- ➤ Climate Change would increase irrigation water requirement (IWR) by 23% (A2) and 13%(B2) in Sri Lanka (Silva et al., 2007).
- Climate change can lead to **lower rice yield** in Thailand (Shrestha et al., 2017; Babel et al., 2011).

Methodology

Objectives:

- To investigate the impact of climate change on rice yield, crop water requirement (CWR) and water availability, and
- To evaluate adaptation strategies for farm water management on rice fields for the period 2020-2044 under RCP4.5 and RCP8.5 scenarios

Study area: Songkhram River Basin, Thailand

Figure 3.3.5 Land use and land cover of Songkhram River Basin

Basin: Songkhram River Basin

Location: Northeast Thailand

Catchment area: ~ 12,700 km²

River origin: Phu Phan Nataional Park at Sakon Nakhon

River meet: Mekong river at Nakon Phanom

River length: $\sim 420 \text{ km}$

16 to 35 °C Temperature:

Annual rainfall: 1,600 - 2,400 mm

Population: 1,940,572 in 2000

300 - 533 m³/s Discharge:

Economic crop: Rice

Flood plain Topography:

Land use:

~ 70 % of catchment area is agricultural area

~ 68 % of agricultural area is paddy fields

Issues:

Floods in wet season: high rainfall density +

water effect from Mekong river

Water shortage: topography & soil properties

Future climate projection: Maximum temperature

Future maximum temperature is expected to increase by 0.9°C under RCP4.5 scenario and 1.0°C under RCP8.5 scenario

C

Future climate projection: Minimum temperature

Future minimum temperature is expected to increase by 0.9°C under RCP4.5 scenario and 1.1°C under RCP8.5 scenario

10

Future climate projection: Monthly maximum & minimum temperature

Future maximum and minimum temperature is expected to increase for all seasons under climate change scenarios.

11

Future climate projection: Rainfall

Future annual rainfall may not be changed in future under climate change scenarios.

12

Future climate projection: Remail

Rainfall may:

increase during summer season (February to May) not change during middle of year (May to September) decrease during end of the year (October to November)

13

Climate change impacts on rice production

- ➤ The crop water requirement (CWR) may increase by 16% and 17% under RCP4.5 and RCP8.5 scenarios;
- Supplying water can reduce the water stress and increase rice yield to meet the potential rice yield;
- ➤ The potential rice yield for KDML105 is 2.27 t/ha (363 kg/rai) (Rice Department, 2018).

Adaptations: Farm water management for rice fields

➤ A pond with 600 m³ capacity or dimension 20 m length, 15 m width, 2 m depth is enough for one ha of rice area to meet the CWR in 2030s under climate change scenarios.

Variables	Unit	Value	
Irrigation water requirement (IWR) for 2030s (2020-2044)	mm	47 (RCP4.5), 47 (RCP8.5)	
Assuming total losses 20%	mm	9.4	
Water requirement	mm	56.4	
Water requirement for 1 ha (10000 m³) of rice	m³	564	

Conclusions

- ➤ The future maximum and minimum temperatures are expected to rise, while rainfall unchanged under both RCP4.5 and RCP8.5 scenarios for 2020-2044.
- ➤ Crop water requirement (CWR) is expected to increase, but the future rice yield may decrease under climate change scenarios.
- ➤ The pond (600 m³ or 20x15x2 m capacity) to store water for each ha of rice to overcome water deficit and reach the potential rice yield.

References

- ➤ Boonwichai, S., Shrestha, S., Babel, M.S., Weesakul, S., & Datta, A. (2019). Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram river basin, Thailand. Science of the Total Environment, 652, 189-201.
- ➤ Boonwichai, S., Shrestha, S., Babel, M.S., Weesakul, S., & Datta, A. (2018). Climate change impacts on irrigation water requirements, crop water productivity and rice yield in the Songkhram river basin, Thailand. *Journal of Cleaner Production*, 198, 1157-1164.

17

Contact person

Siriwat Boonwichai
Water Engineering and Management
Asian Institute of Technology, Thailand
Email: siriwatboonwichai@gmail.com

18