Reconstruction of the great famine of western India using historical rainfall and global reanalysis datasets: challenges and uncertainties

THA2019 International
Conference on Water Management and
Climate Change towards Asia's Water-Energy-Food Nexus and SDGs
23rd January 2019

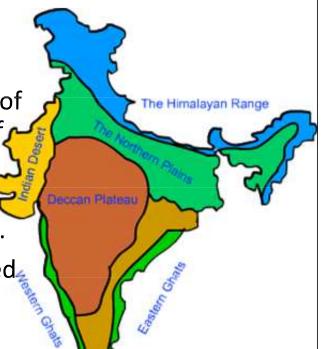
Seemanta Sharma Bhagabati

Department of Civil Engineering, The University of Tokyo

Outline

- 1. Introduction
- 2. Study area
- 3. Research strategy
- 4. Model setup and results
- 5. Conclusion and future work

Introduction

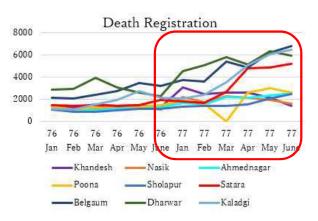

 The Deccan Plateau is a large plateau which covers most of the western and southern part of India.

Agriculture is the main industry; hence heavily relies on Monsoon.

• In 1870s, 2 big disasters happened

 The Deccan Riot (1875): Peasants revolted against their absentee landlords

 The Great Famine (1876-78): Resulting from the lack of rainfall (droughts in 1876 led to famine)



International Conference on Water Management and Climate Change towards Asia' Water-Energy-Food Nexus and SDGs

Introduction (contd.)

- Droughts in the Deccan plateau (1876) caused the Great Famine in 1876-78: The famine ranged over a large part of India.
- The pandemic of malaria hit the damaged areas around Northern India in 1879.
- The total number of deaths amounted to 5 million.

- Several studies tried to map the population change due to the Great Famine but were unable to provide any clear statistics and only provided decadal statistics.
- Although death records exist, the correlation between deaths and drought is unclear.

Introduction (contd.)

Past studies (Global)

• Multiple studies have been conducted, focusing on droughts in multiple regions/countries

	Studies	Target area	Time scale	Type of analysis	Remarks
1	Ahmadalipour & Moradkhani, 2018	Africa	1960-2100	Drought vulnerability	Drought vulnerability Index (DVI)
2	Asong et al, 2018	Canada	1950-2013	Precipitation analysis	Standardized Precipitation Evapotranspiration Index (SPEI)
3	Barella-Oritz & Quintana-Segui, 2018	Spain	1989-2008	Precipitation analysis	Regional Climate Models, ERA-Interim
4	Kim et al, 2011	Korea	1777-2008	Precipitation analysis	Effective Drought Index (EDI)
5	Mendoza & Velasco, 2005	Mexico	1502-1899	Drought frequency analysis	Agricultural and hydrometeorological events
6	Yao et al, 2018	China	1961-2013	Drought severity and trends	Precipitation based analysis: Precipitation anomaly (Pa), standard precipitation index (SPI), etc.
7	Zhang et al, 2019	Global (32 river basins)	1948-2010	Precipitation and Evapotranspiration	Standardized Moisture Anomaly Index (SZI), Potential Evapotranspiration (PET)
THA International Conference on Water Management and Climate Change towards As Water-Energy Statistical and historical Studies are not shown					

Introduction (contd.)

Past studies (India)

- Multiple event based and long-term studies in the mid to late 20th century and 21st century respectively.
- Many datasets on droughts and floods are also released for the 20^{th} century.
- Very limited studies in the 19th century, especially event-based study.
- No study on the Great Famine from a hydrological point of view.

	Studies	Target area	Time scale	Type of analysis	Remarks
1	Dhorde & Patel, 2016	Western India	2002-2010	Satellite data products (MODIS)	Leaf area index (LAI)-based temperature vegetation dryness index (TVDI)
2	Jha & Srivastava, 2018	Western India	2001-2013	Meteorological	Standardized Precipitation Evapotranspiration Index (SPEI)
3	Kumar et al, 2013	Entire India	1901-2010	Meteorological	Standardized Precipitation Evapotranspiration Index (SPEI)
4	Singh et al, 2017	North-west Himalaya	1740 – 2014	Isotope analysis	Tree ring drought records
5	Swetalina & Thomas, 2016	Central India	1974-2009	Hydrological/statis tical	Flow Duration Curve (FDC)
6	Yan et al, 2016	Northern & Eastern India	1901-2010	Drought frequency analysis	Palmer Drought Severity Index (PDSI)
THE UNIVERSITY OF TOKYO 2019 Water-Ener Statistical and historical studies are not shown 23-25 January 2019. Swissotel Bangkok Ratchada Thailand					

Introduction (contd.)

Goal & uniqueness

• Understanding the Great Famine from the hydrological perspective

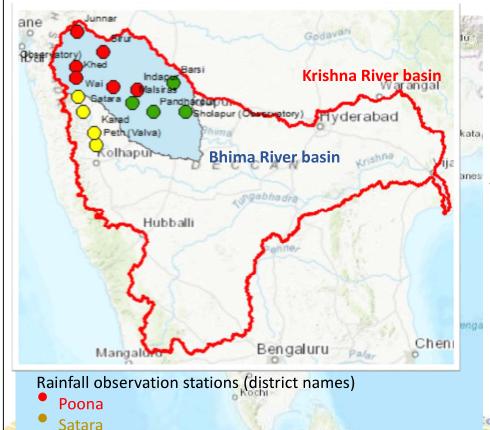
Objective

• Reconstruction of historical meteorological events (the Great Famine) in the Indian sub-continent

Outputs

 Drought maps, water availability in the basin, time-scale analysis of meteorological parameters

Expected outcomes


• Link and understand the disorders in the Deccan Plateau in the late 1870s which resulted from a series of events (the Deccan riots in 1875, droughts in 1776, the Great famine in 1776-78).

Study area

Sholapur

SRILANKA

Bhima River

River length: 861 km Catchment area: 70,614 km²

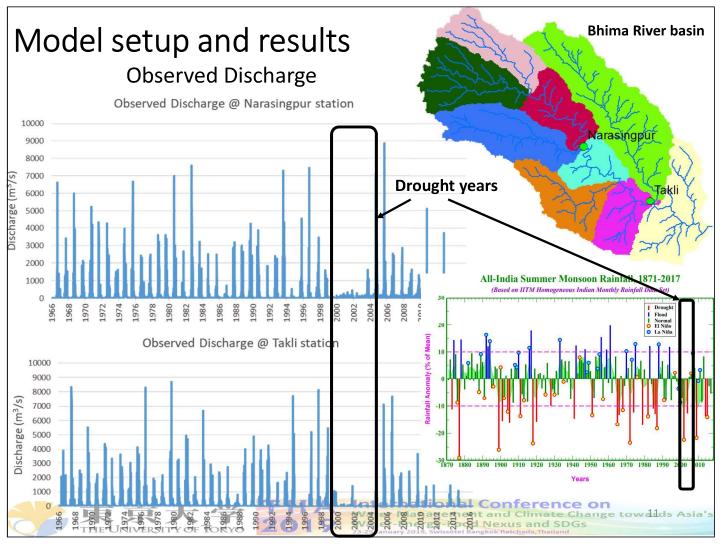
Tributary of Krishna River

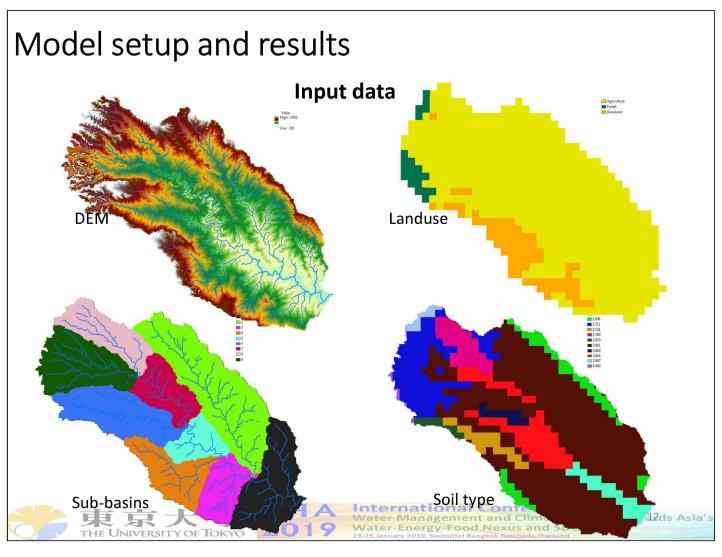
Elevation: source: 945 m Mouth: 336 m

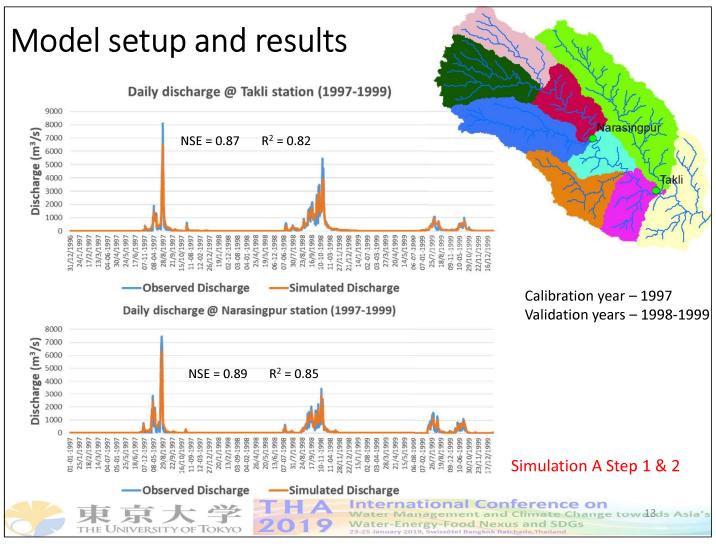
onference on and Climate Change towards Asia

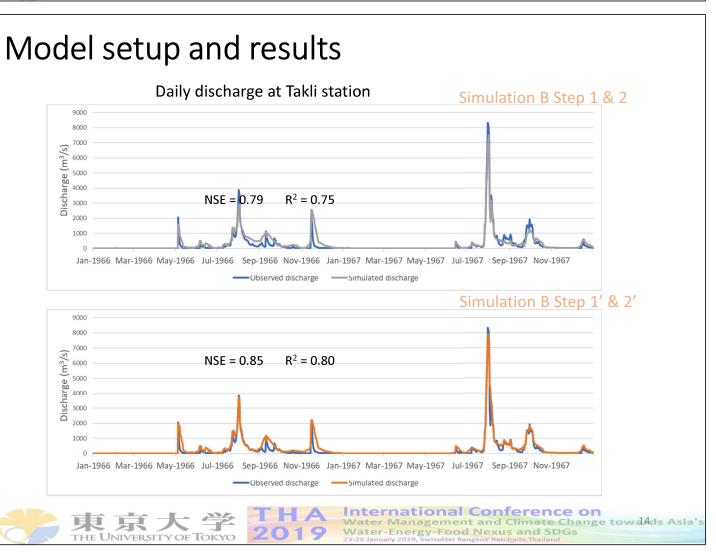
Research Strategy

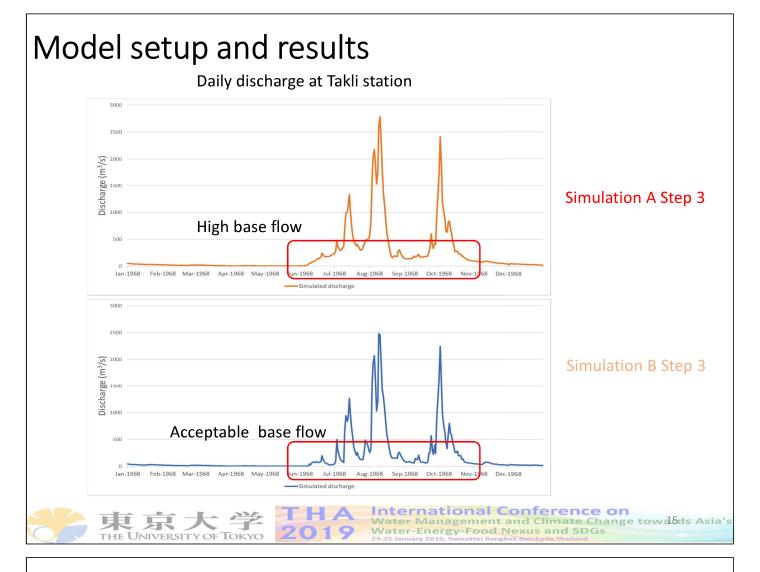
Typical flowchart

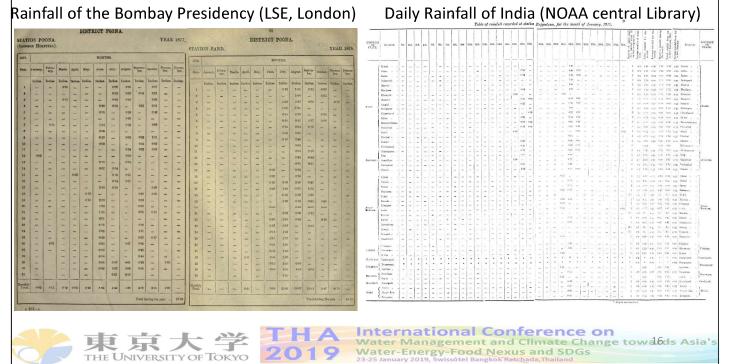

Static data remains the same

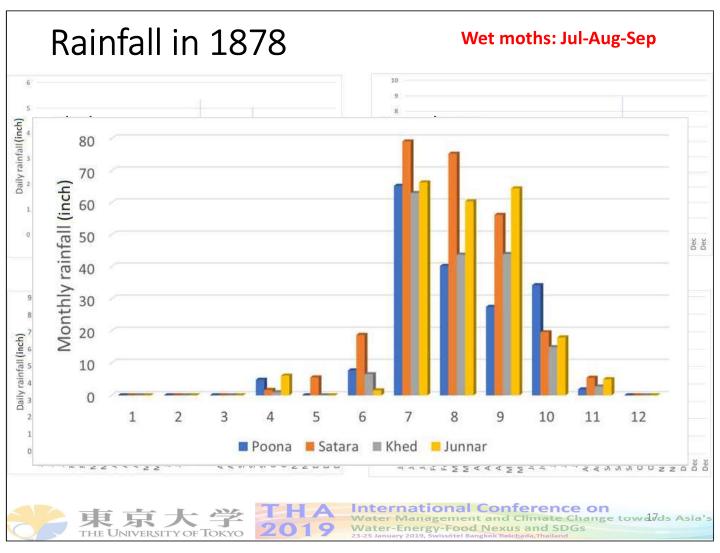

But not applicable for simulating events which are over a century old

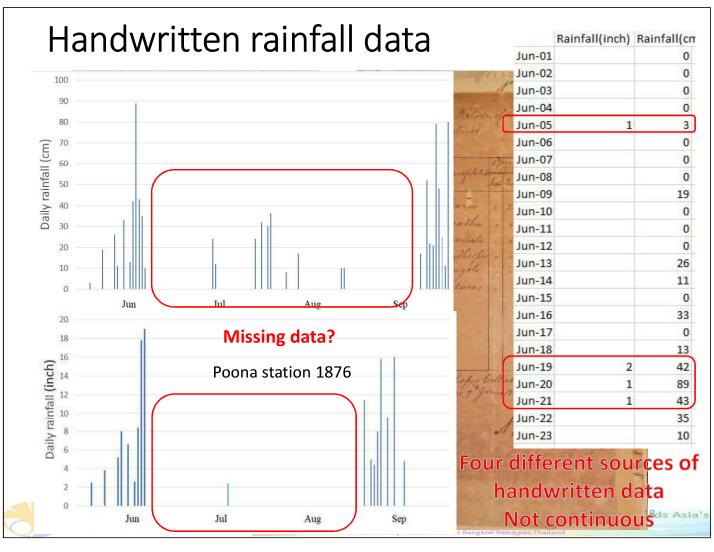



Research Strategy


		Model setup	o strategy
		1876	
	Meteorological data	Global reanalysis data (meteorological data only)	
	Static data	Partially available	
	Missing data	No observed data (rainfall/discharge) available	
	Hydraulic structures	Very few	
	Drought year	1876	
	Simulation B	Step 3	Step 1' & 2' Step 1 & 2
Simulation A		Step 3	Step 1 & 2
2	東京大 THE UNIVERSITY OF	THA 2019 ½	nternational Conference on Vater Management and Climate Change towalds Asia's Vater-Energy-Food Nexus and SDGs 3-25 January 2019, Swissotel Bangkok Ratchada, Thailand







Precipitation data availability

- Rainfall data is available ~1878 onwards 47 stations
- Hand-written data ~ 1870 1878 (limited)

Conclusion and future work

- A hydrological model to simulate events of the 19th century in western India has been setup
- Observed rainfall during the famine period is limited
- Devise a way to use the sparse limited data before 1880s.
- Run model for 1870s
- Collect additional datasets for validation

Thank you for your attention

