

Assessment of near-real-time satellitebased precipitation over Thailand

Narongthat Thanyawet and Piyatida Ruangrassamee
Department of Water Resources Engineering, Faculty of
Engineering, Chulalongkorn university.

CHULA ENGINEERING

1/31/2019

Outline

Introduction

Data

Methodology

Result & Discussion

Conclusion

Introduction Data Methodology Result	& Discussion Conclusion
--------------------------------------	-------------------------

Objectives

- To evaluate satellite-based precipitation products, GSMaP_NRT and PERSIAN-CCS.
- To find how well of satellite-based rainfall products detection, especially in the northern part of Thailand.

Faculty of Engineering, Chulalongkorn University www.eng.chula.ac.th

Introduction	Data	Methodology	Result & Discussion	Conclusion
--------------	------	-------------	---------------------	------------

Table 1. The rainfall data

Name	Period	Туре	Spatial resolution	Temporal resolution
TMD Station	2009-2013	Point	None	Daily
GSMaP_NRT	2009-2013	Grid	0.1 degree	Hourly
PERSIANN-CCS	2009-2013	Grid	0.04 degree	Hourly

Global Rainfall Map in Near-Real-Time (GSMaP_NRT) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networl Cloud Classification System (PERSIANN-CCS) use for evaluation.

Faculty of Engineering, Chulalongkorn University www.eng.chula.ac.th

,

CHULA ENGINEERING

1/31/2019

Introduction	Data	Methodology	Result & Discussion	Conclusion
--------------	------	-------------	---------------------	------------

Figure 3. Comparing points data and grid data.

Comparing point data in which the same grid data.

Introduction

Data

Methodology

Result & Discussion

Conclusion

Exploratory Indices

Root mean squared error (RMSE)

$$RMSE = \sqrt{\frac{\sum (X_{obs} - X_{sim})^2}{N}}$$

Correlation coefficient (R)

$$R = \frac{N\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{N(\Sigma x^2) - (\Sigma x)^2 \sqrt{N(\Sigma y^2) - (\Sigma y)^2}}}$$

Bias of

estimation

bias of estimation= $\frac{1}{N}\sum_{i}(X_{obs}-X_{sim})$

Faculty of Engineering, Chulalongkorn University www.eng.chula.ac.th

- (

CHULA ENGINEERING

1/31/2019

Intr	od	ucti	on

Data

Methodology

Result & Discussion

Conclusion

Figure 4. Contingency Table

Ratio of hit data and miss data.

Hit rate:
$$HR = \frac{a}{a+c}$$

Ratio of false alarm data and negative data.

False
$$FR = \frac{b}{b+d}$$

Methodology Introduction **Result & Discussion** Conclusion Data Annual rainfall in Thailand GSMaP-NRT: R =0.74, Bias =225.78 mm/year, RMSE =556.27 mm/year PERSIANN-CCS: R =0.45, Bias =-99.13 mm/year, RMSE =680.30 mm/year 3000 **GSMaP_NRT** product 0 Satellite Data (mm) 2000 1000 1000 1000 tend to 0 0 0 underestimate. **PERSIANN-CCS** product 500 tend to overestimate.

Observation Data (mm) Figure 7. Scatter plot of annual rainfall over Thailand.

2000

3500

www.eng.chula.ac.th

1/31/2019

Introduction	Data Me	:hodology	Result & Discussion	Conclusion
--------------	---------	-----------	---------------------	------------

Table 2. Summary of Exploratory indices.

	GSMaP_NRT			PERSIANN-CCS		
	R	RMSE	Bias	R	RMSE	Bias
Daily	0.46	0.74	12.63	0.43	-0.15	13.04
Daily		mm./d.	mm./d.	0.43	mm./d.	mm./d.
Monthly	0.75	18.40	105.82	0.66	-8.63	125.86
	0.75	mm./m.	mm./m	0.00	mm./m.	mm./m.
Annual	0.74	225.78	556.27	0.45	-99.13	680.30
	0.74	mm./y.	mm./y.	0.43	mm./y.	mm./y.

Faculty of Engineering, Chulalongkorn University www.eng.chula.ac.th

- 1.

1/31/2019

Figure 9. Hit rate and false alarm rate of PERSIANN-CCS over Thailand.

1/31/2019

Table 3. The average hit rate and false alarm rate of satellite-based rainfall products

	HR	FR
GSMaP_NRT	0.65	0.18
PERSIANN-CCS	0.67	0.15

Faculty of Engineering, Chulalongkorn University www.eng.chula.ac.th

Data

1

CHULA SINGINEERING

Introduction

1/31/2019

Conclusion

4	
	The two satellite-based rainfall products with the hit rate of 65-67%
	· · · · · · · · · · · · · · · · · · ·

Methodology

and the false alarm rate of 15-18%.

The daily correlation coefficient of 0.43-0.46 and the monthly and annual increase to 0.45-0.75.

Result & Discussion

For the annual rainfall greater than 1,000 mm.

The performance of satellite-based products <u>significantly varies</u> <u>spatially</u>. GSMaP NRT is relatively <u>better than</u> PERSIANN-CCS.

Adjustment to reduce bias of the products should be implemented.

