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Introduction

» Problem
* Thailand’s water management

- Rule curve

Thailand Water Management

Difficulty in water management

Seasonal forecast
Transition season

Rule Curve for Bhumibol Reservoir

15000 )
13500 ;
o000 | Old Rule New Rule
= 10500 |  Curve Curve
g i : EEEEERESR EEEEEENE
= 9000 r--;* i
g : » : EEEEEEESR EEEEEENDS
& 7500 e i
] - v LA i ; Y ol ;
% 6000 r i ’-"‘—f""f:;%'-“‘-?-*e:;m-'-'-"" _________ I | R : 2011 2015
o i i i i i — —
& 4500 - !
3000 - i
= . 0Id-URC = Old-LRC - - New-URC = # = New-LRC :
1500 - .
! Maximum Capacity - Dead Storage Bhumibol 2011 Bhumibol 2015 :
0! i
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Source: EGAT
Introduction

»Previous studies

seasonal climate forecast (ensemble

A hydrological model is forcing with a range of probability in

streamflow prediction; ESP)

Wood et al. 2016 indicated the predictability of streamflow prediction.
The most predictability at seasonal scales are during winter

The smallest predictability found at the end of a climatologically
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Objective

» Clarify the effect of SPB, which have the evidence in
a global scale, to the predictability of river discharge
in Chao Phraya River Basin (CPRB)

»Evaluate the accuracy of seasonal streamflow
forecasts on each initial prediction day
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Data and Methodology
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Data and Methodology

»Hydrological model

Model was developed by Hanasaki et al. 2008a

Land surface model
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Data and Methodology

» Data

* Observed data
- Rainfall data (1981-2004)

Thai Meteorological Department (TMD)

Royal Irrigation Department (RID)

- River discharge data at C2 station

Royal Irrigation Department (RID)
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Data and Methodology

 Meteorological forcing data

- Kotsuki et al. 2010 provide a set of meteorological data (K10)

- Developed from rain gauge station in CPRB

- Several study used K10 as input data

Data period: 1981-2004

v Surface air temperature (3-hourly)
v Specific humidity (daily)
v Surface air pressure (1-hourly)

v Wind speed (1-hourly)

v' Shortwave radiation (3-

hourly)

v' Longwave radiation (3-hourly)

v Precipitation (daily)

v' Data resolution : 5 min.

grid resolution

K1

rainfall and K10 rainfall data in CPRB
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Data and Methodology

+ Seasonal Rainfall Prediction (Imada et al. 2015)

- Easy to access for utilizing
- Focused in Thailand’s meteorological

Data period: 1979-2011

Rainfall =
APHRODITE* +
Anomaly

- Anomaly Precipitation (Ref.year 1961-2000; monthly time scale)

- 8 Ensembles

Downscaling 1.4 degree to 5 min resolution
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Data and Methodology

» Methodology
* Preprocessing and postprocessing

Taking bias correction techniques to remove the systematic bias
of both hydrological model and climate variables

Linear scaling (LS)

- Grid-to-grid monthly correction

- Corrected mean value between model and observed

cor = bias-corrected data
obs = observed data

2004 . .
j=1981 Pobs,d,i,j sim = simulated data

Peordij = Psimd,ij X Sz200a p
j=1981 " sim,d,i,j

i = month (Jan, Feb,..., Dec)
j =year (1981, 1983,..., 2004)
d =day(1,2,3,4,5...31 or 30 or 28 or 29)
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Results and discussion

 Model Calibration

- HO8 was driven by K10 data to simulated river discharge from 1981 to 2004

Calibration .
Nat vs Sim

. River Discharge at C2 station 1981-2004 (mm/month)
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Overall, The river discharge simulation by K10 data shows a good results
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Results and discussion

* Preprocessing (Bias correction of rainfall prediction)

- Remove bias from seasonal rainfall prediction (Linear Scaling)
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* River discharge simulation
- HO8 model was simulated by bias-corrected rainfall prediction
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Results and discussion

* Postprocessing

- Bias-corrected river discharge simulation from last slide

Prediction - Postprocessing
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Results and discussion

* Postprocessing

- River discharge simulation for each initial month

Discharge
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Conclusion

« The results of the accuracy of the next 1 to 3 months in river discharge
prediction were better in accuracy than river discharge prediction for the
next 4 to 6 months

« We found that the effect of SPB on rainfall prediction shows less
predictability on May that effected on lower river discharge prediction skills
during spring, which initial day for prediction is the first day of February
and May

+ Bias Correction fix mean of data

Climatological Mean of River Discharge
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Conclusion

* Bias between observed river discharge and simulated river discharge
arise from the H08 model and rainfall prediction. Therefore, a study of
prediction rainfall and SPB is important for river discharge prediction
especially during the transitional time (end of dry season to wet season)
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Introduction

However, there was an issue on the low accuracy of seasonal prediction for
climate variables on spring, which is so-called “spring predictability barrier
(SPB)”, is identified critical issue for seasonal prediction in global scale

Prediction
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»Objective

- Clarify the effect of SPB, which have the evidence in a global scale, to the
predictability of river discharge in CPRB

- Evaluate the accuracy of seasonal streamflow forecasts on each initial
prediction day
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Results and discussion

River Discharge (mm/month)

Climatological Mean of River Discharge

120
60
—_— b ‘.E-
2 100
50  =#=Model K10 -
=t Preprocessing E___ 80
40 : % E
== Postprocessing i‘ E
£ E 60
. i
i- 40
20 .
E o
10 i
]

(=]

0 0
Observed River acharge [mmfmaonth)

lan Feb Mar Apr May Jun Jul Aug Sep Oct Nowv Dec

a0

Monthly River Discharge from 1982 to 2004

&0 B0 100 120

Different NSE of River Discharge Different NSE of River Discharge Different NSE of River Discharge Different NSE of River Discharge
Initial in February Initial in May Initial in August Initial in November
10 10 10 10
8 ] 8 8
Y6 U n 6 “s
Z, 2y 2, £,
2 2 2 2
0 0 .—.——-./—_‘_'__ 0 — 0
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 ] 5 &
Lead time Lead time Lead time Lead time
21
Results and discussion
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Index

» Nash-Sutcliffe model efficiency coefficient (NSE)

Nash-Sutcliffe model efficiency coefficient (NSE) used to indicate the accuracy
(predictive power) between observed data and simulated data of the hydrological
model. NSE can range from -~ to 1 which an efficiency of 1 means a perfect
match between simulated discharge and observed data. NSE equals to 0
indicates that the model predictions are accurate as the mean of observed data
where below 0 means the observed mean is a better predictor than the model.

T (05 - Q)

NSE =1 - <07
Z=1(Qc€ - Qo)

where an is model data, Qf, is observed data and Q, is average value of
observed data.
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