Investigating the Effect of Initial Soil Moisture on River Discharge Using Pseudo-Discharge Data Generated by a Distributed Hydrologic Model

Kazuaki Yorozu, Yutaka Ichikawa and Yasuto Tachikawa

Hydrology and Water Resources Laboratory Civil and Earth Resources Engineering, Kyoto University, Japan

Introductions

- In general, for river planning or management in Japan,
 T-years annual maximum river discharge is utilized.
- For estimating *T*-years annual maximum river discharge, various type of spatial pattern and time series of rainfall are considered.
- However, soil moisture as initial condition is NOT considered because the impact of initial soil moisture on peak river discharge is assumed to be negligible.
- We'd like to evaluate the impact of initial soil moisture on peak river discharge comparing with that of rainfall pattern.

Methodology

- Developing a distributed hydrologic model
- Generating pseudo-river discharge
- Investigating the effect of initial soil moisture on peak river discharge

Flow Routing Model

1K-FRM

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q_{L}$$
$$Q = \alpha A^{m}$$

$$q_{\rm L} = Q_{\rm s} + Q_{\rm sb} - W_{\rm in}$$

A: cross section area, Q: discharge rate, t: time, x: distance,

 q_L : lateral flow rate, α , m: coefficient,

 Q_s : surface runoff rate, Q_{sb} : sub-surface runoff rate,

 $W_{\rm in}$: irrigation water withdrawal

http://hywr.kuciv.kyoto-u.ac.jp/products/1K-DHM/1K-DHM.html

Hydrologic Model

Application Area

Boundary and Simulation Design

Japanese 55-years Reanalysis: JRA-55

- ~ 60km (TL319) spatial resolution
- 6 hour temporal resolution
- Monthly rainfall amount is modified by CHIRPS satellite based rainfall product

MCD15A3 for vegetation

- Composited every 4 days at 1-kilometer resolution
- Aggregating 60km for SiBUC

Grid size in models

- Same as JRA-55 for SiBUC
- 1km for 1K-FRM

Model Validation - 2011 Thailand flood

	Observation	Model
Peak discharge	3353 m ³ s ⁻¹	3410 m ³ s ⁻¹
Peak date	Oct/4th	Oct/4th

Nash-Sutcliffe coefficient: 0.79 Correlation coefficient: 0.90

RMSE: 219 m³ s⁻¹

Yorozu et al., 2018.

Methodology

- Developing a distributed hydrologic model
- Generating pseudo-river discharge data
- Investigating the effect of initial soil moisture on peak river discharge

Generating Atmospheric Series

Consider time series of atmospheric field for three years. If it can be assumed that atmospheric field in *t*-1 month is NOT correlated with that in *t* month, we think it is able to generate different time series of atmospheric field by recombining time series of atmospheric field.

Evaluate Impact of Rainfall Pattern

 By using generated atmospheric time series as a forcing to a distributed hydrologic model, large number of river discharge data can be calculated.

Evaluate Impact of Rainfall Pattern

- By using generated atmospheric time series as a forcing to a distributed hydrologic model, large number of river discharge data can be calculated.
- It is able to evaluate the impact of rainfall pattern on peak river discharge.

Evaluate Impact of Soil Moisture

- By using generated atmospheric time series as a forcing to a distributed hydrologic model, large number of river discharge data can be calculated.
- It is able to evaluate the impact of rainfall pattern on peak river discharge.

Evaluate Impact of Soil Moisture

- By using generated atmospheric time series as a forcing to a distributed hydrologic model, large number of river discharge data can be calculated.
- It is able to evaluate the impact of rainfall pattern on peak river discharge.

Evaluate Impact of Soil Moisture

- By using generated atmospheric time series as a forcing to a distributed hydrologic model, large number of river discharge data can be calculated.
- It is able to evaluate the impact of rainfall pattern on peak river discharge.
- It is able to evaluate the impact of initial soil moisture on peak river discharge.

Atmospheric Data Recombination

Japanese 55-years Reanalysis: JRA-55

- ~ 60km (TL319) spatial resolution
- 6 hour temporal resolution for 1983 ~ 2016
- Monthly rainfall amount is modified by CHIRPS satellite based rainfall product
- The previous analysis concluded that atmospheric data between August and September could be assumed to be not related.
- Pseudo-atmospheric data ware generated by recombining atmospheric data between August and September.

Yorozu et al., 2018.

Methodology

- Developing a distributed hydrologic model
- Generating pseudo-river discharge data
- Investigating the effect of initial soil moisture on peak river discharge

Impact of Rainfall Pattern

- Standard deviation of peak discharge values could show the impact of rainfall pattern.
- There are total 34 combinations for data before August.

Impact of rainfall pattern:

Averaged standard deviation is 718 m³ s⁻¹

Impact of Soil Moisture

- Standard deviation of peak discharge values could show the impact of initial soil moisture.
- There are total 34 combinations for data after September.

Impact of soil moisture:

Averaged standard deviation is 127 m³ s⁻¹

Conclusions

- A distributed hydrologic model was developed for upper part of Bhumibol dam catchment.
- By using recombined atmospheric data between August and September, pseudo-river discharge data was generated utilizing a distributed hydrologic model.
- Estimation of the **impact of rainfall pattern** on peak river discharge was **718** m³ s⁻¹.
- Estimation of the **impact of soil moisture** on peak river discharge was **127** m³ s⁻¹.
- The soil moisture impact on river peak discharge is NOT negligible.

Land Surface Model

Simple Biosphere including Urban Canopy

Schematic image of SiBUC

Meteorological boundary: Rainf, Snowf, LWdown, SWdown, Tair, Qair, Psurf, Wind Phenological boundary: Leaf Area Index

Prognostic Equation of Soil Moisture

$$\frac{dW_{1}}{dt} = \frac{1}{\theta_{s}D_{1}} \left[P_{1} - Q_{1,2} - \frac{1}{\rho_{w}} (E_{s}) \cdot E_{dc,1} \right]$$

$$\frac{dW_{2}}{dt} = \frac{1}{\theta_{s}D_{2}} \left[Q_{1,2} - Q_{2,3} \cdot \frac{E_{dc,2}}{\rho_{w}} \right]$$

$$\frac{dW_{3}}{dt} = \frac{1}{\theta_{s}D_{3}} \left[Q_{2,3} - Q_{3} \right]$$

 W_i : soil wetness of i th layer,

 D_i : soil depth of i th layer,

 $\theta_{\rm s}$: porosity, $\rho_{\rm w}$: water density,

 P_1 , $Q_{i, i+1}$: infiltration,

 E_s : evaporation,

 $E_{\text{dc. }i}$: transpiration from i th layer

K. Tanaka, doctoral dissertation, 2005

Water balance concept

Sim. with Same Precipitation after Sep. ^元王3000 Bhumibol Dam Inflow in 2011 Discharge 2000 1000 Bhumibol Dam Inflow in 2011 Daily Rainfall [mm] A(JtoA, 1983) A(StoD, 2004)_ ₹3000 34 hydrographs A(JtoA, 2004)A(StoD, **2004**) A(StoD, 2004)A(JtoA, 2016) Bhumibol Dam Inflow 2004 after Sep. 20 total 34 combinations Daily Rainfall [mm] √_ 3000 40 Discharge [m³ s 60 Jan. to Aug. Sep. to Dec. Aug/01

Oct/01

Date

Nov/01

Conclusions

4000

Precipitation and Peak Discharge

Impact of rainfall pattern:

Averaged standard deviation is **718 m³ s⁻¹**

Impact of soil moisture:

Averaged standard deviation is 127 m³ s⁻¹

The soil moisture impact on river peak discharge is NOT negligible.