

Flood Computations for Changing River Environment in Korea

Kyung Soo Jun

Sungkyunkwan University

THA International Conference on Water Management and Climate Change towards Asia's Water-**2019** Energy-Food Nexus and SDGs

- Change of River Environment in Korea: The Four Major Rivers Restoration Project
- Flood Computations for Changing River Environment in Korea
 - 1-D Unsteady Flow Model: Governing Equations and Numerical Method
 - The Four Major Rivers Restoration Project: Impacts on River Flows
 - Simultaneous Simulation of Unsteady Flow and Gate Opening of Weirs
 - Development of Stage-Discharge Relationship

- Change of River Environment in Korea: The Four Major Rivers Restoration Project
- Flood Computations for Changing River Environment in Korea
 - 1-D Unsteady Flow Model: Governing Equations and Numerical Method
 - The Four Major Rivers Restoration Project: Impacts on River Flows
 - Simultaneous Simulation of Unsteady Flow and Gate Opening of Weirs
 - Development of Stage-Discharge Relationship

 Low Flow Channel Water Storage due to the Combined Effect of Channel Dredging and Weirs

THA International Conference on Water Management and Climate Change towards Asia's Water-**2019** Energy-Food Nexus and SDGs

 Typical Bird's Eye View of the Four Major Rivers after the Project Completion

Schematic Representation of the Flow at the Weir

THA International Conference on Water Management and Climate Change towards Asia's Water-**2019** Energy-Food Nexus and SDGs

- Change of River Environment in Korea: The Four Major Rivers Restoration Project
- Flood Computations for Changing River Environment in Korea
 - 1-D Unsteady Flow Model: Governing Equations and Numerical Method
 - The Four Major Rivers Restoration Project: Impacts on River Flows
 - Simultaneous Simulation of Unsteady Flow and Gate Opening of Weirs
 - Development of Stage-Discharge Relationship

Numerical Model

Governing Equation

Node:
$$\sum_{k=1}^{L_j} Q_{j,k} + Q_{ext}(j,t) = 0$$
, $j = 1, \dots, J$
 $y_{j,k} = y_j$, $k = 1, \dots, L_j$, $j = 1, \dots, J$

Fluvial Links:
$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

 $\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} (\alpha \frac{Q^2}{A}) + gA \frac{\partial y}{\partial x} + gA \frac{Q|Q|}{K^2} = 0$

THA International Conference on Water Management and Climate Change towards Asia's Water-2019 Energy-Food Nexus and SDGs

Numerical Model

Governing Equation

Weir-type
$$Q_u = Q_d$$

Links:
$$Q_u = \mu_s b \sqrt{2g} \sqrt{y_u - y_d} (y_d - y_w), (y_d - y_w \ge \frac{2}{3} (y_u - y_w))$$

$$Q_u = \mu_f b \sqrt{\frac{2g}{3}} (y_u - y_w)^{3/2}, (y_d - y_w < \frac{2}{3} (y_u - y_w))$$

Numerical Model

Governing Equation

 $\begin{array}{ll} \underline{\text{Orifice-type}} & Q_{u} = Q_{d} \\ \underline{\text{Links}}: & Q_{u} = \frac{2}{3}\sqrt{2g}\,\mu_{f0}b_{0}((y_{u}-y_{w})^{3/2}-\big(y_{u}-y_{w}-d\big)^{3/2}),\,\big(y_{d} \leq y_{w}\big) \\ Q_{u} = \frac{2}{3}\sqrt{2g}\,\mu_{f0}b_{0}((y_{u}-y_{d})^{3/2}-\big(y_{u}-y_{w}-d\big)^{3/2}\big) \\ & \qquad \qquad + \mu_{s0}b_{0}(y_{d}-y_{w})\sqrt{2g\big(y_{u}-y_{d}\big)}, \qquad \big(y_{w} \leq y_{d} < y_{w} + d\big) \\ Q_{u} = \mu_{s0}A\sqrt{2g\big(y_{u}-y_{d}\big)}, \qquad \big(y_{d} > y_{w} + d\big) \end{array}$

THA International Conference on Water Management and Climate Change towards Asia's Water-**2019** Energy-Food Nexus and SDGs

Numerical Method

- · Finite difference method
- Preissmann's 4-pt. scheme
- Newton-Raphson method
- · Matrix double-sweep algorithm
 - ✓ Link forward sweep
 - ✓ Node matrix loading and solution
 - ✓ Link backward sweep

CONTENTS

- Change of River Environment in Korea: The Four Major Rivers Restoration Project
- Flood Computations for Changing River Environment in Korea
 - 1-D Unsteady Flow Model: Governing Equations and Numerical Method
 - The Four Major Rivers Restoration Project: Impacts on River Flows
 - Simultaneous Simulation of Unsteady Flow and Gate Opening of Weirs
 - Development of Stage-Discharge Relationship

THA International Conference on Water Management and Climate Change towards Asia's Water-**2019** Energy-Food Nexus and SDGs

Schematic Representation of Modeled River Reach: the Nakdong River

Flood Flow Simulations

Maximum Flood Water Level, Sept 2003 Flood

THA International Conference on Water Management and Climate Change towards Asia's Water-**2019** Energy-Food Nexus and SDGs

- Change of River Environment in Korea: The Four Major Rivers Restoration Project
- Flood Computations for Changing River Environment in Korea
 - 1-D Unsteady Flow Model: Governing Equations and Numerical Method
 - The Four Major Rivers Restoration Project: Impacts on River Flows
 - Simultaneous Simulation of Unsteady Flow and Gate Opening of Weirs
 - Development of Stage-Discharge Relationship

Gate Fully Open with No (External) Flood

Upstream of Haman Weir

THA International Conference on Water Management and Climate Change towards Asia's Water-**2019** Energy-Food Nexus and SDGs

Gate Operation

- Objectives
 - Lower the flood water level → Open the gate!
 - Secure water in the channel → Close it !!!
- Strategy
 - Increase gate openings as water level rises.

Numerical Model

Governing Equation

$$\begin{split} & \underbrace{\text{Drifice-type}}_{\text{Links}}: & Q_{u} = Q_{d} \\ & \underbrace{\text{Links}}_{\text{2}}: & Q_{u} = \frac{2}{3}\sqrt{2g}\mu_{f0}b_{0}((y_{u} - y_{w})^{3/2} - (y_{u} - y_{w} - d)^{3/2}), (y_{d} \leq y_{w}) \\ & Q_{u} = \frac{2}{3}\sqrt{2g}\mu_{f0}b_{0}((y_{u} - y_{d})^{3/2} - (y_{u} - y_{w} - d)^{3/2}) \\ & \qquad \qquad + \mu_{s0}b_{0}(y_{d} - y_{w})\sqrt{2g(y_{u} - y_{d})}, & (y_{w} \leq y_{d} < y_{w} + d) \\ & Q_{u} = \mu_{s0}A\sqrt{2g(y_{u} - y_{d})}, & (y_{d} > y_{w} + d) \end{split}$$

THA International Conference on Water Management and Climate Change towards Asia's Water-2019 Energy-Food Nexus and SDGs

Schematic Representation of Modeled River Reach

Initial Condition: Normal Pool Level + Steady Flow Simulation

Flood Flow Simulations

Haman Weir

THA International Conference on Water Management and Climate Change towards Asia's Water-2019 Energy-Food Nexus and SDGs

- Change of River Environment in Korea: The Four Major Rivers Restoration Project
- Flood Computations for Changing River Environment in Korea
 - 1-D Unsteady Flow Model: Governing Equations and Numerical Method
 - The Four Major Rivers Restoration Project: Impacts on River Flows
 - Simultaneous Simulation of Unsteady Flow and Gate Opening of Weirs
 - Development of Stage-Discharge Relationship

THA International Conference on Water Management and Climate Change towards Asia's Water2019 Energy-Food Nexus and SDGs Schematic Representation of Modeled River Reach

Distance from the downstream boundary (km)

Simulated Flood Events

Event	Duration	Max. Discharge from Chungju Dam (m³/s)	Max. Discharge from Chungpyung Dam (m³/s)	For
01	2004/07/15~07/23	3,360	3,962	Development of the relationship
02	2006/07/14~07/23	13,515	11,497	
03	2007/07/24~07/26	1,742	365	
04	2008/07/24~07/27	2,248	7,405	
05	2009/07/14~07/16	3,180	8,348	
06	2002/08/07~08/12	10,340	4,402	Verification
07	2004/08/18~08/21	1,494	1,477	
08	2005/07/01~07/03	1,710	2,883	
09	2005/08/02~08/05	1,058	1,174	
10	2006/07/26~07/30	4,866	5,042	

Calculated Stage vs. Discharge for 5 Flood Events

THA International Conference on Water Management and Climate Change towards Asia's Water-**2019** Energy-Food Nexus and SDGs

Definition Sketch: Discharge vs. stage and gate openings

Stage-Discharge Relationship Developed for Each Group of Different Gate Openings

Verification of the Developed Relationship

